binary tree implemented

binarytree
Jozef Jankaj 2021-05-29 20:43:22 +02:00
parent e29bbcbb89
commit 2abe59726f
13 changed files with 381 additions and 19 deletions

View File

@ -4,8 +4,19 @@
<exclude-output />
<content url="file://$MODULE_DIR$">
<sourceFolder url="file://$MODULE_DIR$/src" isTestSource="false" />
<sourceFolder url="file://$MODULE_DIR$/tests" isTestSource="true" />
</content>
<orderEntry type="inheritedJdk" />
<orderEntry type="sourceFolder" forTests="false" />
<orderEntry type="module-library" scope="TEST">
<library name="JUnit4">
<CLASSES>
<root url="jar://$MAVEN_REPOSITORY$/junit/junit/4.13.1/junit-4.13.1.jar!/" />
<root url="jar://$MAVEN_REPOSITORY$/org/hamcrest/hamcrest-core/1.3/hamcrest-core-1.3.jar!/" />
</CLASSES>
<JAVADOC />
<SOURCES />
</library>
</orderEntry>
</component>
</module>

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,168 @@
package binarytree;
import graph.Node;
import graph.Tree;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.List;
import java.util.Queue;
/**
* A binary tree is a tree where every node has AT MOST 2 child nodes
*/
public class BinaryTree<T extends Comparable<T>> extends Tree<T> {
public BinaryTree() {
this(null);
}
public BinaryTree(T initialValue) {
this.root = new BinaryTreeNode<>(null, initialValue); // initialize the root
}
/**
* Adds a new node to the tree
*
* @param value value of the node to be added
* @return true if the addition was successful, false otherwise
*/
@Override
public Node<T> addNode(T value) {
this.values.add(value);
// if root has not been initialized yet
if (this.root.getValue() == null) {
this.nodes.add(root);
this.root.setValue(value);
return root;
}
// root has been initialized, so call on the root to add the value
Node<T> newNode = root.addNode(value);
this.nodes.add(newNode);
return newNode;
}
/**
* removes a node from the tree, based on value
*
* @param value the value of the node to be removed
* @return true if the node was successfully removed, false otherwise
*/
@Override
public boolean removeNode(T value) {
if (!this.values.contains(value)) {
return false;
}
Node<T> node = findNode(value);
List<Node<T>> children = new ArrayList<>(node.getChildren());
// remove the node
this.values.remove(value);
this.nodes.remove(node);
if(node.getParent() != null) {
node.getParent().getChildren().remove(node);
this.nodes.remove(node);
} else { // if the value had no parent, it was the root node
// set the root node to be the first node of the children list
this.root = children.get(0);
}
// binary tree does not put any restrictions on what order the children are in the tree
// re-introduce all children into the root
// it could happen that we have removed the root node and set the first child to be the new root
// if so, only reintroduce the other children, omitting the first one
int start = 0;
if(node.getParent() == null) {
start = 1;
}
for (int i = start; i < children.size(); i++) {
Node<T> child = children.get(i);
this.root.addNode(child.getValue());
}
return true;
}
/**
* Removes the passed node
*
* @param node node to be removed
* @return true if the removal was successful, false otherwise
*/
@Override
public boolean removeNode(Node<T> node) {
if (!this.nodes.contains(node)) {
return false;
}
// remove the node
this.values.remove(node.getValue());
this.nodes.remove(node);
node.getParent().getChildren().remove(node);
// binary tree does not put any restrictions on what order the children are in the tree
// re-introduce all children into the parent
for (Node<T> child : node.getChildren()) {
node.getParent().addNode(child.getValue());
}
return true;
}
/**
* Finds the node with passed value
*
* @param value the value the required node should have
* @return the required node if one is present, null otherwise
*/
@Override
public Node<T> findNode(T value) {
if (!this.values.contains(value)) {
return null;
}
// because Binary Tree does not put ANY restrictions on what order the children are in,
// we need search through the entire tree
// we shall perform a BFS to do this
Queue<Node<T>> queue = new ArrayDeque<>();
queue.offer(root);
while (!queue.isEmpty()) {
Node<T> current = queue.poll();
if (current.getValue().equals(value)) {
return current;
}
for (Node<T> child : current.getChildren()) {
queue.offer(child);
}
}
return null;
}
@Override
public String toString() {
if(nodes.size() == 0) {
return "Empty";
}
StringBuilder sb = new StringBuilder();
for(Node<T> n : nodes) {
sb.append(n.toString());
}
return sb.toString();
}
}

View File

@ -0,0 +1,78 @@
package binarytree;
import graph.Node;
import java.util.Random;
public class BinaryTreeNode<T extends Comparable<T>> extends Node<T> {
public BinaryTreeNode(Node<T> parent, T item) {
super(parent, item);
}
/**
* Adds a new node to the current node
* if the numbers of nodes is larger than 2, proceed to the next node
*
* @param value value to be added
* @return the new node if adding was successful, null otherwise
*/
@Override
public Node<T> addNode(T value) {
if (children.size() < 2) {
Node<T> newChild = new BinaryTreeNode<T>(this, value);
this.addNode(newChild);
return newChild;
}
// pick a random child out of the current children
Node<T> randomChild = this.children.get(new Random().nextInt(this.children.size()));
return randomChild.addNode(value);
}
private void addNode(Node<T> node) {
if (children.size() < 2) { // we can still add a node
this.children.add(node);
} else {
// pick a random child out of the current children
Node<T> randomChild = this.children.get(new Random().nextInt(this.children.size()));
randomChild.addNode(node.getValue());
}
}
@Override
public int hashCode() {
int randomPrime = 13; // chosen randomly
int sum = this.children.stream()
.map(Node::hashCode)
.reduce(0, Integer::sum);
return (this.value.hashCode() + sum) * randomPrime;
}
@Override
public boolean equals(Object that) {
if (that instanceof Node<?>) {
return ((Node<?>) that).getValue().equals(value);
}
return false;
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append(String.format("BT(%s)", value));
for(Node<T> child : children) {
sb.append(":");
sb.append(child.toString());
}
return sb.toString();
}
}

View File

@ -1,11 +0,0 @@
package graph;
import java.util.List;
public abstract class Graph {
protected List<Node> nodes;
public List<Node> getAllNodes() {
return nodes;
}
}

View File

@ -1,20 +1,46 @@
package graph;
import java.util.ArrayList;
import java.util.List;
public abstract class Node {
private final String item;
private List<Node> children;
public abstract class Node<T extends Comparable<T>> {
protected T value;
protected Node<T> parent;
protected final List<Node<T>> children;
public Node(String item) {
this.item = item;
public Node(Node<T> parent, T value) {
this.value = value;
this.parent = parent;
this.children = new ArrayList<>();
}
public String getItem() {
return item;
public T getValue() {
return value;
}
public List<Node> getChildren() {
public void setValue(T value) {
this.value = value;
}
public List<Node<T>> getChildren() {
return children;
}
public Node<T> getParent() {
return parent;
}
public abstract Node<T> addNode(T value);
@Override
public int hashCode() {
return value.hashCode();
}
@Override
public boolean equals(Object obj) {
return super.equals(obj);
}
public abstract String toString();
}

View File

@ -0,0 +1,35 @@
package graph;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
public abstract class Tree<T extends Comparable<T>> {
protected Node<T> root;
protected List<Node<T>> nodes;
protected Set<T> values;
public Tree() {
this.nodes = new ArrayList<>();
this.values = new HashSet<>();
}
public List<Node<T>> getAllNodes() {
return nodes;
}
public int getSize() {
return nodes.size();
}
public Node<T> getRoot() {
return root;
}
public abstract Node<T> addNode(T value);
public abstract boolean removeNode(T value);
public abstract boolean removeNode (Node<T> n);
public abstract Node<T> findNode(T value);
public abstract String toString();
}

View File

@ -0,0 +1,55 @@
import binarytree.BinaryTree;
import binarytree.BinaryTreeNode;
import graph.Node;
import org.junit.Assert;
import org.junit.Before;
import org.junit.Test;
public class BinaryTreeTests {
BinaryTree<Integer> tree;
@Before
public void init() {
this.tree = new BinaryTree<>();
}
@Test
public void testAddition() {
Node<Integer> n1 = tree.addNode(1);
Node<Integer> n2 = tree.addNode(2);
Assert.assertEquals(2, tree.getSize());
Assert.assertEquals(n1, tree.findNode(1));
Assert.assertEquals(n2, tree.findNode(2));
Assert.assertNull(tree.findNode(3));
Assert.assertEquals(1, tree.getRoot().getValue().intValue());
Assert.assertEquals(2, tree.getRoot().getChildren().get(0).getValue().intValue());
}
@Test
public void testAddition2() {
tree.addNode(1);
tree.addNode(2);
tree.addNode(3);
tree.addNode(4);
Assert.assertEquals(4, tree.getSize());
}
@Test
public void testAddition3() {
Node<Integer> n1 = new BinaryTreeNode<>(null, 1);
}
@Test
public void testRemoval() {
tree.addNode(1);
tree.addNode(2);
System.out.println(tree);
tree.removeNode(1);
System.out.println(tree);
Assert.assertEquals(1, tree.getSize());
Assert.assertEquals(2, tree.getRoot().getValue().intValue());
}
}