added ternary trie implementation

trie-skips
Jef Roosens 2022-11-15 16:21:27 +01:00
parent d7f95f0fbf
commit 0b97f124c5
Signed by: Jef Roosens
GPG Key ID: B75D4F293C7052DB
7 changed files with 698 additions and 3 deletions

View File

@ -1,10 +1,15 @@
cmake_minimum_required(VERSION 3.24)
cmake_minimum_required(VERSION 3.20)
project(lander C CXX)
set(CMAKE_C_STANDARD 17)
add_subdirectory(crow)
include_directories(crow/include)
add_subdirectory(tries)
include_directories(crow/include tries/include)
if(CMAKE_BUILD_TYPE STREQUAL Release)
add_compile_options(-O3 -flto)
endif()
add_executable(lander src/main.cpp)
target_link_libraries(lander PUBLIC Crow)
target_link_libraries(lander PUBLIC Crow ternarytrie)

View File

@ -20,6 +20,15 @@ $(BUILD_DIR)/Debug/Makefile: CMakeLists.txt
build: cmake
@ make -C '$(BUILD_DIR)/Debug'
.PHONY: cmake-release
cmake-release: $(BUILD_DIR)/Release/Makefile
$(BUILD_DIR)/Release/Makefile: CMakeLists.txt
@ cmake -B'$(BUILD_DIR)/Release' -DCMAKE_BUILD_TYPE=Release .
.PHONY: prod
prod: cmake-release
@ make -C '$(BUILD_DIR)/Release'
.PHONY: run
run: build
@ ./build/Debug/lander

View File

@ -0,0 +1,8 @@
cmake_minimum_required(VERSION 3.20)
project(AD3-project-2022-2023 C)
set(CMAKE_C_STANDARD 17)
include_directories(include)
add_library(ternarytrie STATIC include/ternarytrie.h src/ternarytrie.c)

View File

@ -0,0 +1,72 @@
#ifndef AD3_TERNARYTRIE
#define AD3_TERNARYTRIE
/**
* The implementation of a Ternary Trie.
*
* Each node should be represented by a binary tree in order to reduce the memory usage.
*/
#include <stdbool.h>
#include <stddef.h>
/**
* Type definition for the struct representing the current Trie.
*
* You can (and should) redefine this in your c-file with the concrete fields.
*/
typedef struct ttrie TernaryTrie;
/**
* Allocate and initialize an empty Trie.
*
* @return a pointer to an empty Trie struct
*/
TernaryTrie* ternarytrie_init();
/**
* De-allocate a trie by freeing the memory occupied by this trie.
*
* @param trie which should be freed
*/
void ternarytrie_free(TernaryTrie* trie);
/**
* Search whether a string is contained in this trie.
*
* @param trie
* @param string
* @return true if the string is contained within this trie, false otherwise
*/
bool ternarytrie_search(TernaryTrie* trie, const char* string);
/**
* Add a string to this trie.
*
* @param trie
* @param string
* @return true if the trie was changed by this operation, false if it was already present
*/
bool ternarytrie_add(TernaryTrie* trie, const char* string);
/**
* Remove a string from this trie.
*
* Note: strings added to this trie are considered to be "owned" by the caller.
* Removing the string from the trie should not free the string's memory.
*
* @param trie
* @param string
* @return true if the string was present and has been removed, false if it was not present
*/
bool ternarytrie_remove(TernaryTrie* trie, const char* string);
/**
* Returns the number of strings in this trie.
*
* @param trie
* @return the number of strings in this trie
*/
size_t ternarytrie_size(TernaryTrie* trie);
#endif //AD3_TERNARYTRIE

42
tries/src/common.c 100644
View File

@ -0,0 +1,42 @@
#define ALPHABET_SIZE 256
#define DELIMITER '\0'
#define MAX(x, y) (((x) > (y)) ? (x) : (y))
#include <stdlib.h>
#include <string.h>
/**
* Own implementation of strdup, heavily inspired by the glibc source code.
*
* This is neccessary because subGIT does not seem to have a strdup
* implementation available for use.
*
* @param s string to duplicate
* @return pointer to the newly allocated string
*/
char *my_strdup(const char *s) {
size_t len = strlen(s);
char *new = malloc(len + 1);
new[len] = DELIMITER;
return (char *)memcpy(new, s, len);
}
/**
* Own implementation of strndup, heavily inspired by the glibc source code.
*
* This is neccessary because subGIT does not seem to have a strndup
* implementation available for use.
*
* @param s string to duplicate
* @return pointer to the newly allocated string
*/
char *my_strndup(const char *s, size_t n) {
size_t string_len = strlen(s);
size_t len = MAX(string_len, n);
char *new = (char *)malloc(len + 1);
new[len] = DELIMITER;
return (char *)memcpy(new, s, len);
}

View File

@ -0,0 +1,247 @@
#include "ternarytrie.h"
#include "ternarytrie_node.c"
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
typedef struct ttrie {
TernaryTrieNode *root;
size_t size;
} TernaryTrie;
/**
* Allocate and initialize an empty TernaryTrie
*
* @return pointer to the empty TernaryTrie
*/
inline TernaryTrie *ternarytrie_init() {
TernaryTrie *node = calloc(1, sizeof(TernaryTrie));
node->root = ttnode_init();
return node;
}
/**
* De-allocate a TernaryTree by freeing its entire underlying structure.
*
* @param trie trie to free
*/
inline void ternarytrie_free(TernaryTrie *trie) {
ttnode_free(trie->root);
free(trie);
}
typedef struct searchresult {
TernaryTrieNode *parent;
TernaryTrieNode *child;
} SearchResult;
SearchResult ternarytrie_search_node(TernaryTrie *trie, const char *string) {
SearchResult out = {NULL, NULL};
// Edge case for empty string
if (string[0] == DELIMITER) {
if (trie->root->type == 1) {
out.child = trie->root;
}
return out;
}
size_t i = 0;
TernaryTrieNode **node_ptr = &(trie->root);
TernaryTrieNode **child_ptr;
do {
child_ptr = ttnode_search(*node_ptr, string[i], false);
// We don't have to check whether *node_ptr is NULL, because if it was
// NULL, it wouldn't be in the binary tree.
if (child_ptr == NULL || *child_ptr == NULL) {
return out;
}
i++;
if (string[i] == DELIMITER || (*child_ptr)->type == 2) {
break;
}
node_ptr = child_ptr;
} while (1);
if ((*child_ptr)->type == 2) {
if (string[i] != DELIMITER &&
strcmp(string + i, (*child_ptr)->ptr.string) == 0) {
out.child = *child_ptr;
out.parent = *node_ptr;
}
}
// Here we know we've traversed through the entire string and have arrived at
// a node that isn't a full leaf
else if ((*child_ptr)->type == 1) {
out.child = *child_ptr;
out.parent = *node_ptr;
}
return out;
}
/**
* Returns whether the given string is present in the trie.
*
* @param trie trie to look in
* @param string string to look up
* @return true if the string is present in the trie, false otherwise
*/
inline bool ternarytrie_search(TernaryTrie *trie, const char *string) {
SearchResult res = ternarytrie_search_node(trie, string);
return res.child != NULL;
}
/**
* Add the given string to the TernaryTrie.
*
* @param trie trie to add string to
* @param string string to add
* @return true if the string wasn't present in the trie and thus added, false
* otherwise
*/
bool ternarytrie_add(TernaryTrie *trie, const char *string) {
// Edge case for empty string
if (string[0] == DELIMITER) {
if (trie->root->type == 0) {
trie->root->type = 1;
trie->size++;
return true;
}
return false;
}
size_t i = 0;
TernaryTrieNode **node_ptr = &(trie->root);
TernaryTrieNode **new_node_ptr;
do {
new_node_ptr = ttnode_search(*node_ptr, string[i], true);
// ttnode_search will only return NULL with create true if the node to look
// in represents a full leaf. Therefore, we split the node and restart the
// iteration.
if (new_node_ptr == NULL) {
// It's possible we've ended up in the full leaf node that represents this
// string
if (strcmp(string + i, (*node_ptr)->ptr.string) == 0) {
return false;
}
ttnode_split(*node_ptr);
continue;
}
node_ptr = new_node_ptr;
// The search function has added the character to the node
i++;
// The next node in the string's path doesn't exist yet, so we add it to the
// trie
if (*node_ptr == NULL) {
TernaryTrieNode *new_node = ttnode_init();
// If there's a remaining part of the string, we add it to the leaf
if (string[i] != DELIMITER) {
ttnode_set_string(new_node, string + i);
} else {
new_node->type = 1;
}
*node_ptr = new_node;
trie->size++;
return true;
}
} while (string[i] != DELIMITER);
// If we've arrived here, we've traversed through the entire string and have
// arrived at a node that already exists.
// The existing node is a full leaf, so we split it and make it
// represent our new string.
if ((*node_ptr)->type == 2) {
ttnode_split(*node_ptr);
}
// The string is already in the trie
else if ((*node_ptr)->type == 1) {
return false;
}
(*node_ptr)->type = 1;
trie->size++;
return true;
}
/**
* Remove the given string from a TernaryTrie.
*
* @param trie trie to remove string from
* @param string string to remove
* @return true if the string was in the trie and thus removed, false otherwise
*/
bool ternarytrie_remove(TernaryTrie *trie, const char *string) {
SearchResult res = ternarytrie_search_node(trie, string);
if (res.child == NULL) {
return false;
}
trie->size--;
if (res.parent != NULL) {
// We're removing a full leaf, so we calculate the offset of the character
// to remove from the parent
if (res.child->type == 2) {
size_t str_len = strlen(string);
size_t suffix_len = strlen(res.child->ptr.string);
ttnode_remove(res.parent, string[str_len - suffix_len - 1]);
}
// In the other case, the character to remove from the parent is the last
// character of the string
else if (res.child->size == 0) {
size_t i = 0;
while (string[i + 1] != DELIMITER) {
i++;
}
ttnode_remove(res.parent, string[i]);
} else {
res.child->type = 0;
return true;
}
ttnode_free(res.child);
}
// We're in the root here
else {
res.child->type = 0;
}
return true;
}
/**
* Return the current size of the given trie.
*
* @param trie trie to return size for
* @return size of the trie
*/
inline size_t ternarytrie_size(TernaryTrie *trie) { return trie->size; }

View File

@ -0,0 +1,312 @@
#include "common.c"
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
/**
* Represents a node of the binary tree contained within each non-leaf
* TernaryTrieNode.
*/
typedef struct ttinode {
struct ttinode *left;
struct ttinode *right;
struct ttnode *next;
char key;
} TernaryTrieInnerNode;
/**
* Represents a node inside a TernaryTrie. A node can be in one of three states:
* - Internal node: a node that's part of a path to a leaf node. This node will
* always have a size greater than one, and an initialized root.
* - Leaf: a node solely used to represent a string ending there. Its size is 0,
* its ptr is unitialized and represents is true.
* - Full leaf: a leaf node that contains a string. This occurs when a string is
* added whose path is not fully in the tree yet, causing its remaining suffix
* to be stored as a single node. Its size will be zero, represents its true,
* and its string pointer is initialized.
*/
typedef struct ttnode {
union {
TernaryTrieInnerNode *root;
char *string;
} ptr;
// What type of node this is
// 0: regular non-representing node
// 1: regular representing node
// 2: full leaf
uint8_t type;
// Dependent on type
// 0, 1: size of underlying binary tree
// 2: length of string
uint8_t size;
} TernaryTrieNode;
// Required for recursively freeing tree structure
void ttnode_free(TernaryTrieNode *node);
/**
* Allocate and initialize a new TernaryTrieInnerNode representing a given
* character.
*
* @param c character to represent
* @return pointer to newly allocated struct
*/
inline TernaryTrieInnerNode *ttinode_init(char c) {
TernaryTrieInnerNode *node = calloc(1, sizeof(TernaryTrieInnerNode));
node->key = c;
return node;
}
/**
* Allocate and initialize a new TernaryTrieNode.
*
* @return pointer to newly allocated struct
*/
inline TernaryTrieNode *ttnode_init() { return calloc(1, sizeof(TernaryTrieNode)); }
/**
* Free a TernaryTrieInnerNode and its underlying tree structure. This should
* usually only be called on the root of a binary tree to free the entire
* structure.
*
* @param node node whose tree to free
*/
void ttinode_free_cascade(TernaryTrieInnerNode *node) {
if (node->left != NULL) {
ttinode_free_cascade(node->left);
}
if (node->right != NULL) {
ttinode_free_cascade(node->right);
}
if (node->next != NULL) {
ttnode_free(node->next);
}
free(node);
}
/**
* Free a TernaryTrieNode and its underlying tree structure.
*
* @param node node to free
*/
void ttnode_free(TernaryTrieNode *node) {
if (node->type == 2) {
free(node->ptr.string);
} else if (node->size != 0) {
ttinode_free_cascade(node->ptr.root);
}
free(node);
}
/**
* Add the string to the given node & set its type accordingely.
*
* @param node node to add string to
* @param string string to add
*/
inline void ttnode_set_string(TernaryTrieNode *node, const char *string) {
node->type = 2;
node->size = strlen(string);
node->ptr.string = my_strdup(string);
}
/**
* This function performs a lookup in the underlying binary tree of the given
* TernaryTrieNode. If found, the return value is a pointer to the memory
* location where the TernaryTrieInnerNode representing the given character
* stores its `next` field. If not found, the return value is NULL, unless
* `create` is true.
*
* NOTE: a non-NULL return value does not mean that the dereferenced value is
* also not NULL. In particular, if `create` is set to true and the function had
* to create the new node, the dereferenced value will always be NULL.
*
* @param node node to perform lookup in. If node is a full leaf, the return
* value will always be NULL, regardless of the value of create.
* @param create whether to create the TernaryTrieInnerNode if it isn't present
* yet. If this is set to true, the function will never return NULL unless the
* node represents a leaf with a string, because the struct and therefore the
* address is created if it doesn't exist yet.
*/
TernaryTrieNode **ttnode_search(TernaryTrieNode *node, const char c,
bool create) {
// Full leafs will always return NULL
if (node->type == 2) {
return NULL;
}
// It can happen that the node has no initialized root yet
if (node->size == 0) {
if (create) {
node->size++;
node->ptr.root = ttinode_init(c);
return &node->ptr.root->next;
}
return NULL;
}
TernaryTrieInnerNode *parent = node->ptr.root;
TernaryTrieInnerNode *child;
// Iterate through the tree until we either find the character or realize it's
// not present in the tree
// FIXME don't use while (1)
while (1) {
if (parent->key == c) {
return &parent->next;
} else if (c < parent->key) {
child = parent->left;
} else {
child = parent->right;
}
if (child == NULL) {
break;
}
parent = child;
};
// child is NULL, meaning the character isn't in the binary tree yet.
// If create is true, we create the new node so that we can still return a
// non-NULL pointer.
if (create) {
TernaryTrieInnerNode *new_node = ttinode_init(c);
if (c < parent->key) {
parent->left = new_node;
} else {
parent->right = new_node;
}
node->size++;
return &new_node->next;
}
return NULL;
}
/**
* Split a remaining string leaf node in two. This function assumes it receives
* a full leaf as its input.
*
* @param node node to split
*/
void ttnode_split(TernaryTrieNode *node) {
TernaryTrieNode *new_node = ttnode_init();
char key = node->ptr.string[0];
// There's a chance the remaining string was only 1 character, meaning the new
// node doesn't have to store a string
if (node->ptr.string[1] != DELIMITER) {
ttnode_set_string(new_node, node->ptr.string + 1);
} else {
new_node->type = 1;
}
node->type = 0;
node->size = 0;
free(node->ptr.string);
node->ptr.string = NULL;
// Initialize node's binary tree with the correct character
TernaryTrieNode **node_ptr = ttnode_search(node, key, true);
*node_ptr = new_node;
}
/*
* Remove the given character from a TernaryTrieInnerNode's subtree. The
* function assumes the character is indeed in the subtree.
*/
void ttinode_remove(TernaryTrieInnerNode *node, const char c) {
TernaryTrieInnerNode **to_remove_ptr = &node;
// We use pointers to pointers here so we can later free the removed node
// without having to know what its parent is
while ((*to_remove_ptr)->key != c) {
to_remove_ptr = (c < (*to_remove_ptr)->key) ? &(*to_remove_ptr)->left
: &(*to_remove_ptr)->right;
};
// If the node isn't a leaf, we have to replace it with another
if ((*to_remove_ptr)->left != NULL || (*to_remove_ptr)->right != NULL) {
TernaryTrieInnerNode *to_replace = *to_remove_ptr;
// Replace with its only right child
if (to_replace->left == NULL) {
TernaryTrieInnerNode *to_remove = to_replace->right;
to_replace->key = to_remove->key;
to_replace->next = to_remove->next;
to_replace->left = to_remove->left;
to_replace->right = to_remove->right;
free(to_remove);
}
// Replace with its only left child
else if (to_replace->right == NULL) {
TernaryTrieInnerNode *to_remove = to_replace->left;
to_replace->key = to_remove->key;
to_replace->next = to_remove->next;
to_replace->left = to_remove->left;
to_replace->right = to_remove->right;
free(to_remove);
}
// Node has two children, so replace with successor
else {
TernaryTrieInnerNode *to_remove_parent = to_replace;
TernaryTrieInnerNode *to_remove = to_replace->right;
while (to_remove->left != NULL) {
to_remove_parent = to_remove;
to_remove = to_remove->left;
}
to_replace->key = to_remove->key;
to_replace->next = to_remove->next;
if (to_remove_parent != to_replace) {
to_remove_parent->left = to_remove->right;
} else {
to_remove_parent->right = to_remove->right;
}
free(to_remove);
}
}
// We're the leaf, so we free ourselves
else {
free(*to_remove_ptr);
*to_remove_ptr = NULL;
}
}
/**
* Remove the given character from a TernaryTrieNode, respecting the rules
* of a binary search tree. This function assumes the character is in the search
* tree.
*
* @param node node to remove character from
* @param c character to remove
*/
inline void ttnode_remove(TernaryTrieNode *node, const char c) {
ttinode_remove(node->ptr.root, c);
node->size--;
if (node->size == 0) {
node->ptr.root = NULL;
}
}