chore: remove old trie library
ci/woodpecker/push/build Pipeline was successful Details
ci/woodpecker/push/docker-rel Pipeline was successful Details
ci/woodpecker/tag/docker Pipeline is pending Details
ci/woodpecker/tag/build Pipeline failed Details
ci/woodpecker/tag/docker-rel Pipeline failed Details

release/0.2.0
Jef Roosens 2023-11-19 21:01:32 +01:00
parent d8f015f923
commit 62ac53cef6
Signed by: Jef Roosens
GPG Key ID: B75D4F293C7052DB
14 changed files with 1 additions and 3330 deletions

View File

@ -7,7 +7,7 @@ SRC_DIR = src
TEST_DIR = test TEST_DIR = test
THIRDPARTY_DIR = thirdparty THIRDPARTY_DIR = thirdparty
INC_DIRS = include $(THIRDPARTY_DIR)/include trie/include lsm/include INC_DIRS = include $(THIRDPARTY_DIR)/include lsm/include
LIBS = m lsm LIBS = m lsm
LIB_DIRS = ./lsm/build LIB_DIRS = ./lsm/build

View File

@ -1,95 +0,0 @@
# https://spin.atomicobject.com/2016/08/26/makefile-c-projects/ was a great
# base for this Makefile
-include config.mk
LIB := $(BUILD_DIR)/$(LIB_FILENAME)
SRCS != find '$(SRC_DIR)' -iname '*.c'
SRCS_H != find $(INC_DIRS) -iname '*.h'
SRCS_H_INTERNAL != find $(SRC_DIR) -iname '*.h'
SRCS_TEST != find '$(TEST_DIR)' -iname '*.c'
OBJS := $(SRCS:%=$(BUILD_DIR)/%.o)
OBJS_TEST := $(SRCS_TEST:%=$(BUILD_DIR)/%.o)
DEPS := $(SRCS:%=$(BUILD_DIR)/%.d) $(SRCS_TEST:%=$(BUILD_DIR)/%.d)
BINS_TEST := $(OBJS_TEST:%.c.o=%)
TARGETS_TEST := $(BINS_TEST:%=test-%)
TARGETS_MEM_TEST := $(BINS_TEST:%=test-mem-%)
_CFLAGS := $(addprefix -I,$(INC_DIRS)) $(CFLAGS) -Wall -Wextra
.PHONY: all
all: lib
# =====COMPILATION=====
# Utility used by the CI to lint
.PHONY: objs
objs: $(OBJS)
.PHONY: lib
lib: $(LIB)
$(LIB): $(OBJS)
ar -rcs $@ $(OBJS)
$(BUILD_DIR)/$(SRC_DIR)/%.c.o: $(SRC_DIR)/%.c
mkdir -p $(dir $@)
$(CC) -c $(_CFLAGS) $< -o $@
# =====TESTING=====
.PHONY: test
test: $(TARGETS_TEST)
.PHONY: test-mem
test-mem: $(TARGETS_MEM_TEST)
.PHONY: $(TARGETS_TEST)
$(TARGETS_TEST): test-%: %
./$^
.PHONY: $(TARGETS_MEM_TEST)
$(TARGETS_MEM_TEST): test-mem-%: %
valgrind --tool=memcheck --error-exitcode=1 --track-origins=yes --leak-check=full ./$^
.PHONY: build-test
build-test: $(BINS_TEST)
$(BINS_TEST): %: %.c.o $(LIB)
$(CC) \
$^ -o $@
# Along with the include directory, each test includes $(TEST_DIR) (which
# contains the acutest.h header file), and the src directory of the module it's
# testing. This allows tests to access internal methods, which aren't publicly
# exposed.
$(BUILD_DIR)/$(TEST_DIR)/%.c.o: $(TEST_DIR)/%.c
mkdir -p $(dir $@)
$(CC) $(_CFLAGS) -I$(TEST_DIR) \
-I$(dir $(@:$(BUILD_DIR)/$(TEST_DIR)/%=$(SRC_DIR)/%)) \
-c $< -o $@
# =====MAINTENANCE=====
.PHONY: lint
lint:
clang-format -n --Werror $(SRCS) $(SRCS_H) $(SRCS_H_INTERNAL)
.PHONY: fmt
fmt:
clang-format -i $(SRCS) $(SRCS_H) $(SRCS_H_INTERNAL)
.PHONY: clean
clean:
rm -rf $(BUILD_DIR)
.PHONY: bear
bear: clean
bear -- make
bear --append -- make build-test
# Make make aware of the .d files
-include $(DEPS)

View File

@ -1,16 +0,0 @@
# Trie design
The underlying data structure is based on a combination of a ternary and a
Patricia trie.
* Nodes are classic ternary trie nodes, meaning each node contains a binary
search tree
* Each node can define a skip, like a Patricia trie, of at most 8 characters.
These skipped characters are stored directly in the structs defining the
nodes.
* While the add function relies on the fact that the input is a NULL-terminated
C string, the trie itself does not store any NULL bytes.
The goal of this datastructure is to be as optimized as possible for search
operations with short (usually < 8 characters) keys, as this is by far the most
common operation for a URL shortener/pastebin.

View File

@ -1,13 +0,0 @@
LIB_FILENAME = libtrie.a
BUILD_DIR = build
SRC_DIR = src
TEST_DIR = test
INC_DIRS = include
# -MMD: generate a .d file for every source file. This file can be imported by
# make and makes make aware that a header file has been changed, ensuring an
# object file is also recompiled if only a header is changed.
# -MP: generate a dummy target for every header file (according to the docs it
# prevents some errors when removing header files)
CFLAGS = -MMD -MP -g

View File

@ -1,148 +0,0 @@
#ifndef AD3_TERNARYTRIE
#define AD3_TERNARYTRIE
#define ALPHABET_SIZE 256
#define DELIMITER '\0'
#define MAX(x, y) (((x) > (y)) ? (x) : (y))
// Should not be higher than 254 or stuff will break
#define TRIE_MAX_SKIP_SIZE 8
/**
* The implementation of a Ternary Trie.
*
* Each node should be represented by a binary tree in order to reduce the
* memory usage.
*/
#include <stdbool.h>
#include <stddef.h>
#include <string.h>
static const char charset[] =
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
static const size_t charset_len = sizeof(charset) - 1;
// Length of randomly generated keys
#define RANDOM_KEY_LENGTH_SHORT 4
#define RANDOM_KEY_LENGTH_LONG 16
/**
* Type definition for the struct representing the current Trie.
*
* You can (and should) redefine this in your c-file with the concrete fields.
*/
typedef struct ttrie Trie;
typedef enum entry_type { Redirect, Paste, Unknown } EntryType;
typedef struct entry {
EntryType type;
char *string;
} Entry;
typedef enum trie_exit_code {
Ok = 0,
NotFound,
AlreadyPresent,
FileError
} TrieExitCode;
Entry *entry_new(EntryType type, const char *string);
/**
* Allocate & initialize a new trie, and populate it with the data from the
* given data file.
*
* @return 0 if everything was successful, non-zero otherwise
*/
TrieExitCode trie_init(Trie **trie_ptr, const char *file_path);
/**
* De-allocate a trie by freeing the memory occupied by this trie.
*
* @param trie which should be freed
*/
void trie_free(Trie *trie);
/**
* Search for an entry in the trie.
*
* @param trie
* @param entry_ptr pointer to Entry will be stored here, if found
* @param key key representing the entry
* @return 0 if the search was successful, 1 if not found
*/
TrieExitCode trie_search(Trie *trie, Entry **entry_ptr, const char *key);
TrieExitCode trie_search_len(Trie *trie, Entry **entry_ptr, const char *key,
size_t key_len);
/**
* Add a string to this trie.
*
* @param trie
* @param key key to represent entry with
* @param entry entry to add
* @return 0 if added, 1 if already in trie, something else if other errors
*/
TrieExitCode trie_add(Trie *trie, const char *key, Entry *entry);
TrieExitCode trie_add_len(Trie *trie, const char *key, size_t key_len,
Entry *entry);
/**
* Add an entry by generating a random string as the key.
*
* @param trie
* @param entry entry to add
* @param secure whether to generate a longer, more secure random key
* @return pointer to the generated key. This pointer is safe to use after
* unlocking the trie, and should be freed manually.
*/
TrieExitCode trie_add_random(Trie *trie, char **key_ptr, Entry *entry,
bool secure);
/**
* Remove an entry from this trie given its key.
*
* @param trie
* @param key key representing entry
* @return true if the entry was present and has been removed, false if it was
* not present
*/
bool trie_remove(Trie *trie, const char *key);
/**
* Returns the number of entries in this trie.
*
* @param trie
* @return the number of entries in this trie
*/
size_t trie_size(Trie *trie);
/*
* Acquire a read lock on the trie.
*
* @return 0 if successful, non-zero otherwise (return value of
* pthread_rwlock_rdlock)
*/
int trie_rlock(Trie *trie);
/*
* Acquire a write lock on the trie.
*
* @return 0 if successful, non-zero otherwise (return value of
* pthread_rwlock_wrlock)
*/
int trie_wlock(Trie *trie);
/*
* Release the lock on a trie after having acquired it beforehand.
*
* @return 0 if successful, non-zero otherwise (return value of
* pthread_rwlock_unlock)
*/
int trie_unlock(Trie *trie);
#endif // AD3_TERNARYTRIE

View File

@ -1,428 +0,0 @@
#include <pthread.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "trie.h"
#include "trie_entry.h"
#include "trie_node.h"
typedef struct ttrie {
TrieNode *root;
size_t size;
char *file_path;
pthread_rwlock_t lock;
} Trie;
TrieExitCode trie_add_no_lock(Trie *trie, const char *key, Entry *entry);
/**
* Allocate and initialize an empty Trie
*
* @return pointer to the empty Trie
*/
TrieExitCode trie_init(Trie **trie_ptr, const char *file_path) {
// Allocate & initialize trie
Trie *trie = calloc(1, sizeof(Trie));
trie->root = tnode_init();
pthread_rwlock_init(&trie->lock, NULL);
if (file_path == NULL) {
trie->file_path = NULL;
*trie_ptr = trie;
return Ok;
}
trie->file_path = strdup(file_path);
// Populate trie with data from file
FILE *fp = fopen(file_path, "r");
if (fp == NULL) {
return FileError;
}
// We read in lines of at most 8192 characters (sounds like enough)
char buffer[8192];
EntryType type;
Entry *entry;
int i, j;
TrieExitCode status;
while (fgets(buffer, 8192, fp)) {
i = 0;
// Move index in buffer until we encounter first space character
while (buffer[i] != ' ') {
i++;
}
// Split the buffer into two strings, the key and the payload
buffer[i] = '\0';
type = entry_type_from_char(buffer[i + 1]);
// Skip type character & its surrounding spaces
j = i + 3;
// Now remove the newline character
while (buffer[j] != '\n') {
j++;
}
buffer[j] = '\0';
entry = entry_new(type, buffer + i + 3);
status = trie_add_no_lock(trie, buffer, entry);
if (status != Ok) {
trie_free(trie);
return status;
}
}
fclose(fp);
*trie_ptr = trie;
return Ok;
}
/**
* De-allocate a TernaryTree by freeing its entire underlying structure.
*
* @param trie trie to free
*/
void trie_free(Trie *trie) {
tnode_free(trie->root);
free(trie);
}
typedef struct searchresult {
TrieNode *parent;
TrieNode *child;
} SearchResult;
SearchResult trie_search_node_len(Trie *trie, const char *key, size_t key_len) {
SearchResult out = {NULL, NULL};
size_t i = 0;
TrieNode **node_ptr = &(trie->root);
TrieNode **child_ptr;
do {
child_ptr = tnode_search(*node_ptr, key[i], false);
// We don't have to check whether *node_ptr is NULL, because if it was
// NULL, it wouldn't be in the binary tree.
if (child_ptr == NULL) {
return out;
}
i++;
if (memcmp((*child_ptr)->string, key + i, (*child_ptr)->string_len) != 0) {
return out;
}
i += (*child_ptr)->string_len;
if (i < key_len) {
node_ptr = child_ptr;
}
} while (i < key_len);
// At this point, we've either arrived at an empty child, or traversed through
// the entire string. Therefore, all we have to do is check whether we're at
// the end of the string and if node represents a string.
if (i == key_len && (*child_ptr)->represents) {
out.parent = *node_ptr;
out.child = *child_ptr;
}
return out;
}
SearchResult trie_search_node(Trie *trie, const char *key) {
return trie_search_node_len(trie, key, strlen(key));
}
/**
* Returns whether the given string is present in the trie.
*
* @param trie trie to look in
* @param string string to look up
* @return true if the string is present in the trie, false otherwise
*/
TrieExitCode trie_search_len(Trie *trie, Entry **entry_ptr, const char *key,
size_t key_len) {
SearchResult res = trie_search_node_len(trie, key, key_len);
if (res.child == NULL) {
return NotFound;
}
*entry_ptr = res.child->entry;
return Ok;
}
TrieExitCode trie_search(Trie *trie, Entry **entry_ptr, const char *key) {
return trie_search_len(trie, entry_ptr, key, strlen(key));
}
/**
* Add the given string to the Trie.
*
* @param trie trie to add string to
* @param string string to add
* @return true if the string wasn't present in the trie and thus added, false
* otherwise
*/
TrieExitCode trie_add_len_no_lock(Trie *trie, const char *key, size_t key_len,
Entry *entry) {
size_t i = 0;
uint8_t offset;
TrieNode **node_ptr = &(trie->root);
TrieNode **child_node_ptr;
TrieNode *child_node;
do {
offset = 0;
child_node_ptr = tnode_search(*node_ptr, key[i], true);
i++;
// We've reached a NULL child, so we add the remaining part of the string
// here
if (*child_node_ptr == NULL) {
child_node = tnode_init();
while (offset < TRIE_MAX_SKIP_SIZE && i + offset < key_len) {
offset++;
}
memcpy(child_node->string, key + i, offset);
child_node->string_len = offset;
*child_node_ptr = child_node;
// If the remaining part of the string is still longer than the maximum
// allowed skip length, we continue through the loop. The next iteration
// will enter this if statement again, and perform the same loop, until
// the string is fully added to the trie.
if (i + offset < key_len) {
node_ptr = child_node_ptr;
i += offset;
continue;
}
child_node->represents = true;
child_node->entry = entry;
trie->size++;
return Ok;
}
while (offset < (*child_node_ptr)->string_len) {
// String no longer aligns with edge, so we have to split
if (key[i + offset] != (*child_node_ptr)->string[offset]) {
TrieNode *split_node = tnode_init();
child_node = *child_node_ptr;
// New string of the split node is the prefix that we were able
// to skip
if (offset > 0) {
memcpy(split_node->string, child_node->string, offset);
split_node->string_len = offset;
}
// split_node replaces child_node as the child of node
*child_node_ptr = split_node;
TrieNode **new_node_ptr =
tnode_search(split_node, child_node->string[offset], true);
*new_node_ptr = child_node;
// child_node has now become a child of split_node, so we update its
// string accordingely by removing the skipped prefix + the one
// character that's already stored by being a child of split_node
/* char *old_string = child_node->string.ptr; */
uint8_t new_skip_len = child_node->string_len - (offset + 1);
if (new_skip_len > 0) {
char old_string[TRIE_MAX_SKIP_SIZE];
memcpy(old_string, child_node->string + offset + 1, new_skip_len);
memcpy(child_node->string, old_string, new_skip_len);
}
child_node->string_len = new_skip_len;
// The while loop will exit either way after this has happened, as
// child_node is now split_node and split_node's len is already set to
// offset.
break;
}
offset++;
}
node_ptr = child_node_ptr;
i += offset;
} while (i < key_len);
if ((*child_node_ptr)->represents) {
return AlreadyPresent;
}
(*child_node_ptr)->represents = true;
(*child_node_ptr)->entry = entry;
trie->size++;
return Ok;
}
TrieExitCode trie_add_no_lock(Trie *trie, const char *key, Entry *entry) {
return trie_add_len_no_lock(trie, key, strlen(key), entry);
}
TrieExitCode trie_add_len(Trie *trie, const char *key, size_t key_len,
Entry *entry) {
if (trie->file_path != NULL) {
// Easiest way to make sure we don't add duplicate entries
// We use an internal function that doesn't require a read lock, as we're
// already inside a write lock
if (trie_search_node_len(trie, key, key_len).child != NULL) {
return AlreadyPresent;
}
FILE *fp = fopen(trie->file_path, "a");
if (fp == NULL) {
return FileError;
}
fputs(key, fp);
fputs(" ", fp);
fputc(entry_type_to_char(entry->type), fp);
fputs(" ", fp);
fputs(entry->string, fp);
fputs("\n", fp);
fclose(fp);
}
// This function *should* always return Ok. Otherwise, the function would've
// exited because the string was found in the trie.
return trie_add_len_no_lock(trie, key, key_len, entry);
}
TrieExitCode trie_add(Trie *trie, const char *key, Entry *entry) {
return trie_add_len(trie, key, strlen(key), entry);
}
TrieExitCode trie_add_random(Trie *trie, char **key_ptr, Entry *entry,
bool secure) {
// Generate random key
bool ok = false;
int key_length = secure ? RANDOM_KEY_LENGTH_LONG : RANDOM_KEY_LENGTH_SHORT;
char *key = malloc(key_length + 1);
key[key_length] = '\0';
// We naively generate new keys until we find a key that isn't in the trie
// yet. With charset_len ** RANDOM_KEY_LENGTH sufficiently large, this isn't a
// problem, because the chances of collisions are extremely small.
while (!ok) {
for (int i = 0; i < key_length; i++) {
key[i] = charset[rand() % charset_len];
}
ok = trie_search_node(trie, key).child == NULL;
}
TrieExitCode return_value = trie_add(trie, key, entry);
if (return_value == Ok) {
*key_ptr = key;
} else {
free(key);
}
return return_value;
}
/**
* Remove the given string from a Trie.
*
* @param trie trie to remove string from
* @param string string to remove
* @return true if the string was in the trie and thus removed, false otherwise
*/
/* bool trie_remove(Trie *trie, const char *string) { */
/* pthread_rwlock_wrlock(&trie->lock); */
/* bool return_value = false; */
/* SearchResult res = trie_search_node(trie, string); */
/* if (res.child == NULL) { */
/* goto end; */
/* } */
/* trie->size--; */
/* return_value = true; */
/* if (res.parent != NULL) { */
/* // We're removing a full leaf, so we calculate the offset of the
* character */
/* // to remove from the parent */
/* if (res.child->type == 2) { */
/* size_t str_len = strlen(string); */
/* size_t suffix_len = strlen(res.child->ptr.string); */
/* tnode_remove(res.parent, string[str_len - suffix_len - 1]); */
/* } */
/* // In the other case, the character to remove from the parent is the last
*/
/* // character of the string */
/* else if (res.child->size == 0) { */
/* size_t i = 0; */
/* while (string[i + 1] != DELIMITER) { */
/* i++; */
/* } */
/* tnode_remove(res.parent, string[i]); */
/* } else { */
/* res.child->type = 0; */
/* goto end; */
/* } */
/* tnode_free(res.child); */
/* } */
/* // We're in the root here */
/* else { */
/* res.child->type = 0; */
/* } */
/* end: */
/* pthread_rwlock_unlock(&trie->lock); */
/* return return_value; */
/* } */
/**
* Return the current size of the given trie.
*
* @param trie trie to return size for
* @return size of the trie
*/
size_t trie_size(Trie *trie) { return trie->size; }
int trie_rlock(Trie *trie) { return pthread_rwlock_rdlock(&trie->lock); }
int trie_wlock(Trie *trie) { return pthread_rwlock_wrlock(&trie->lock); }
int trie_unlock(Trie *trie) { return pthread_rwlock_unlock(&trie->lock); }

View File

@ -1,37 +0,0 @@
#include "trie_entry.h"
#include <stdlib.h>
EntryType entry_type_from_char(char c) {
switch (c) {
case '0':
return Redirect;
case '1':
return Paste;
default:
return Unknown;
}
}
char entry_type_to_char(EntryType et) {
switch (et) {
case Redirect:
return '0';
case Paste:
return '1';
default:
return '\0';
}
}
Entry *entry_new(EntryType type, const char *string) {
Entry *entry = malloc(sizeof(Entry));
entry->type = type;
if (string != NULL) {
entry->string = strdup(string);
} else {
entry->string = NULL;
}
return entry;
}

View File

@ -1,7 +0,0 @@
#include "trie.h"
EntryType entry_type_from_char(char c);
char entry_type_to_char(EntryType et);
Entry *entry_new(EntryType type, const char *string);

View File

@ -1,265 +0,0 @@
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include "trie_node.h"
/**
* Allocate and initialize a new TrieInnerNode representing a given
* character.
*
* @param c character to represent
* @return pointer to newly allocated struct
*/
TrieInnerNode *tinode_init(char c) {
TrieInnerNode *node = calloc(1, sizeof(TrieInnerNode));
node->key = c;
return node;
}
/**
* Allocate and initialize a new TrieNode.
*
* @return pointer to newly allocated struct
*/
TrieNode *tnode_init() {
TrieNode *node = malloc(sizeof(TrieNode));
node->tree_size = 0;
node->string_len = 0;
node->represents = false;
return node;
}
/**
* Free a TrieInnerNode and its underlying tree structure. This should
* usually only be called on the root of a binary tree to free the entire
* structure.
*
* @param node node whose tree to free
*/
void tinode_free_cascade(TrieInnerNode *node) {
if (node->left != NULL) {
tinode_free_cascade(node->left);
}
if (node->right != NULL) {
tinode_free_cascade(node->right);
}
if (node->next != NULL) {
tnode_free(node->next);
}
free(node);
}
/**
* Free a TrieNode and its underlying tree structure.
*
* @param node node to free
*/
void tnode_free(TrieNode *node) {
if (node->tree_size > 0) {
tinode_free_cascade(node->tree);
}
// TODO properly free entry
/* if (node->payload != NULL) { */
/* free(node->payload); */
/* } */
free(node);
}
/**
* This function performs a lookup in the underlying binary tree of the given
* TrieNode. If found, the return value is a pointer to the memory
* location where the TrieInnerNode representing the given character
* stores its `next` field. If not found, the return value is NULL, unless
* `create` is true.
*
* NOTE: a non-NULL return value does not mean that the dereferenced value is
* also not NULL. In particular, if `create` is set to true and the function had
* to create the new node, the dereferenced value will always be NULL.
*
* @param node node to perform lookup in. If node is a full leaf, the return
* value will always be NULL, regardless of the value of create.
* @param create whether to create the TrieInnerNode if it isn't present
* yet. If this is set to true, the function will never return NULL unless the
* node represents a leaf with a string, because the struct and therefore the
* address is created if it doesn't exist yet.
*/
TrieNode **tnode_search(TrieNode *node, const char c, bool create) {
// It can happen that the node has no initialized root yet
if (node->tree_size == 0) {
if (create) {
node->tree_size++;
node->tree = tinode_init(c);
return &node->tree->next;
}
return NULL;
}
TrieInnerNode *parent = node->tree;
TrieInnerNode *child;
// Iterate through the tree until we either find the character or realize it's
// not present in the tree
// FIXME don't use while (1)
while (1) {
if (parent->key == c) {
return &parent->next;
} else if (c < parent->key) {
child = parent->left;
} else {
child = parent->right;
}
if (child == NULL) {
break;
}
parent = child;
};
// child is NULL, meaning the character isn't in the binary tree yet.
// If create is true, we create the new node so that we can still return a
// non-NULL pointer.
if (create) {
TrieInnerNode *new_node = tinode_init(c);
if (c < parent->key) {
parent->left = new_node;
} else {
parent->right = new_node;
}
node->tree_size++;
return &new_node->next;
}
return NULL;
}
/**
* Split a remaining string leaf node in two. This function assumes it receives
* a full leaf as its input.
*
* @param node node to split
*/
/* void tnode_split(TrieNode *node) { */
/* TrieNode *new_node = tnode_init(); */
/* char key = node->ptr.string[0]; */
/* // There's a chance the remaining string was only 1 character, meaning the
* new */
/* // node doesn't have to store a string */
/* if (node->ptr.string[1] != DELIMITER) { */
/* tnode_set_string(new_node, node->ptr.string + 1); */
/* } else { */
/* new_node->type = 1; */
/* } */
/* new_node->entry = node->entry; */
/* node->type = 0; */
/* node->size = 0; */
/* node->entry = NULL; */
/* free(node->ptr.string); */
/* node->ptr.string = NULL; */
/* // Initialize node's binary tree with the correct character */
/* TrieNode **node_ptr = tnode_search(node, key, true); */
/* *node_ptr = new_node; */
/* } */
/*
* Remove the given character from a TrieInnerNode's subtree. The
* function assumes the character is indeed in the subtree.
*/
void tinode_remove(TrieInnerNode *node, const char c) {
TrieInnerNode **to_remove_ptr = &node;
// We use pointers to pointers here so we can later free the removed node
// without having to know what its parent is
while ((*to_remove_ptr)->key != c) {
to_remove_ptr = (c < (*to_remove_ptr)->key) ? &(*to_remove_ptr)->left
: &(*to_remove_ptr)->right;
};
// If the node isn't a leaf, we have to replace it with another
if ((*to_remove_ptr)->left != NULL || (*to_remove_ptr)->right != NULL) {
TrieInnerNode *to_replace = *to_remove_ptr;
// Replace with its only right child
if (to_replace->left == NULL) {
TrieInnerNode *to_remove = to_replace->right;
to_replace->key = to_remove->key;
to_replace->next = to_remove->next;
to_replace->left = to_remove->left;
to_replace->right = to_remove->right;
free(to_remove);
}
// Replace with its only left child
else if (to_replace->right == NULL) {
TrieInnerNode *to_remove = to_replace->left;
to_replace->key = to_remove->key;
to_replace->next = to_remove->next;
to_replace->left = to_remove->left;
to_replace->right = to_remove->right;
free(to_remove);
}
// Node has two children, so replace with successor
else {
TrieInnerNode *to_remove_parent = to_replace;
TrieInnerNode *to_remove = to_replace->right;
while (to_remove->left != NULL) {
to_remove_parent = to_remove;
to_remove = to_remove->left;
}
to_replace->key = to_remove->key;
to_replace->next = to_remove->next;
if (to_remove_parent != to_replace) {
to_remove_parent->left = to_remove->right;
} else {
to_remove_parent->right = to_remove->right;
}
free(to_remove);
}
}
// We're the leaf, so we free ourselves
else {
free(*to_remove_ptr);
*to_remove_ptr = NULL;
}
}
/**
* Remove the given character from a TrieNode, respecting the rules
* of a binary search tree. This function assumes the character is in the search
* tree.
*
* @param node node to remove character from
* @param c character to remove
*/
void tnode_remove(TrieNode *node, const char c) {
tinode_remove(node->tree, c);
node->tree_size--;
}

View File

@ -1,53 +0,0 @@
#include <stdint.h>
#include "trie.h"
/**
* Represents a node of the binary tree contained within each non-leaf
* TrieNode.
*/
typedef struct tinode {
struct tinode *left;
struct tinode *right;
struct tnode *next;
char key;
} TrieInnerNode;
/**
* Represents a node inside a Trie. A node can be in one of three states:
* - Internal node: a node that's part of a path to a leaf node. This node will
* always have a size greater than one, and an initialized root.
* - Leaf: a node solely used to represent a string ending there. Its size is 0,
* its ptr is unitialized and represents is true.
* - Full leaf: a leaf node that contains a string. This occurs when a string is
* added whose path is not fully in the tree yet, causing its remaining suffix
* to be stored as a single node. Its size will be zero, represents its true,
* and its string pointer is initialized.
*/
typedef struct tnode {
Entry *entry;
TrieInnerNode *tree;
uint8_t tree_size;
// Skips are at most TRIE_MAX_SKIP_SIZE characters, and are stored in the
// nodes
char string[TRIE_MAX_SKIP_SIZE];
uint8_t string_len;
bool represents;
} TrieNode;
TrieInnerNode *tinode_init(char c);
TrieNode *tnode_init();
void tinode_free_cascade(TrieInnerNode *node);
void tnode_free(TrieNode *node);
TrieNode **tnode_search(TrieNode *node, const char c, bool create);
void tinode_remove(TrieInnerNode *node, const char c);
void tnode_remove(TrieNode *node, const char c);

File diff suppressed because it is too large Load Diff

View File

@ -1,205 +0,0 @@
#ifndef AD3_FUZZYTEST
#define AD3_FUZZYTEST
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <stdio.h>
#include "trie.h"
typedef struct fuzzyconfig {
int seed;
int word_length;
int word_count;
} FuzzyConfig;
void random_clean_string(char* s, int len) {
char charset[] = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789,?";
int charset_len = strlen(charset);
// len - 1 ensures that we can still set the null byte for the final byte
int actual_len = rand() % (len - 1);
int key;
int i;
for (i = 0; i < actual_len; i++) {
key = rand() % charset_len;
s[i] = charset[key];
}
s[i] = '\0';
}
void random_string(char* s, int len) {
int val = rand();
// String can't be an empty string as they aren't supported
s[0] = (char)(val % 255 + 1);
for (int i = 1; i < len - 1; i++) {
val = rand();
s[i] = (char)(val % 256);
}
// Just in case no null characters were created
s[len - 1] = '\0';
}
void random_string_matrix(char** s, int count, int len) {
for (int i = 0; i < count; i++) {
random_string(s[i], len);
}
}
char** init_string_matrix(int count, int len) {
char** matrix = malloc(count * sizeof(char*));
for (int i = 0; i < count; i++) {
matrix[i] = calloc(len, sizeof(char));
}
return matrix;
}
/**
* Test a given trie implementation using randomly generated strings generated
* using a given seed.
*
* @param seed seed to use for generating random strings
* @param count how many strings to test with
* @param len maximum length of each string
* @param init_func function to creat a new trie of the wanted type
* @param free_func function to free the given trie
* @param add_func function to add a string to the given trie
* @param remove_func function to remove a string from the given trie
* @param size_func function to get the size of the given trie
* @return exit code describing failures, if any
*/
int fuzzy_test_trie_seed(FuzzyConfig conf) {
srand(conf.seed);
char** matrix = init_string_matrix(conf.word_count, conf.word_length);
random_string_matrix(matrix, conf.word_count, conf.word_length);
bool* contains = calloc(conf.word_count, sizeof(bool));
// It's possible that the string matrix contains duplicate strings
bool** contains_dedupped = calloc(conf.word_count, sizeof(bool*));
for (int i = 0; i < conf.word_count; i++) {
if (contains_dedupped[i] == NULL) {
contains_dedupped[i] = contains + i;
for (int j = i + 1; j < conf.word_count; j++) {
if (strcmp(matrix[i], matrix[j]) == 0) {
contains_dedupped[j] = contains + i;
}
}
}
}
// We keep track of the size as well so that we can check whether this is
// also correct
size_t size = 0;
Trie *ct;
trie_init(&ct, NULL);
bool changed;
TrieExitCode status;
// 0: success
// 1: invalid add
// 2: invalid remove
// 3: bad size after adds
// 4: bad size after removes
int exit_code = 0;
// Add all strings to trie, checking for duplicates
for (int i = 0; i < conf.word_count; i++) {
status = trie_add(ct, matrix[i], NULL);
// if changed is false, *contains_dedupped[i] should be true, as changed
// can only be false if the string is already contained in the trie. if
// changed is true, *contains_dedupped[i] should be false, as the string
// cannot be in the trie yet.
if (status == Ok && *contains_dedupped[i]) {
exit_code = 1;
goto END;
}
if (!*contains_dedupped[i]) {
*contains_dedupped[i] = true;
size++;
}
}
// Ensure size is correct
if (trie_size(ct) != size) {
printf("%i %i\n", trie_size(ct), size);
exit_code = 3;
goto END;
}
// Remove all strings again, again taking duplicates into consideration
/* for (int i = 0; i < conf.word_count; i++) { */
/* changed = remove_func(ct, matrix[i]); */
/* // The string shouldn't be in the trie, yet another add operation */
/* // says it added it as well */
/* if (changed != *contains_dedupped[i]) { */
/* exit_code = 2; */
/* goto END; */
/* } */
/* if (*contains_dedupped[i]) { */
/* *contains_dedupped[i] = false; */
/* size--; */
/* } */
/* } */
// Finally, check that the trie is completely empty
/* if (size_func(ct) != 0) { */
/* exit_code = 4; */
/* } */
END:
trie_free(ct);
// Even testing functions should properly free memory
free(contains);
free(contains_dedupped);
for (int i = 0; i < conf.word_count; i++) {
free(matrix[i]);
}
free(matrix);
return exit_code;
}
/**
* Same as fuzzy_test_trie_seed, except that the seed is randomly generated.
*
* @param count how many strings to test with
* @param len maximum length of each string
* @param init_func function to creat a new trie of the wanted type
* @param free_func function to free the given trie
* @param add_func function to add a string to the given trie
* @param remove_func function to remove a string from the given trie
* @param size_func function to get the size of the given trie
* @return the generated seed if the test wasn't successful, -1 otherwise.
*/
/* int fuzzy_test_trie(int count, int len, void* (*init_func) (), void (*free_func) (void*), bool (*add_func) (void*, char*), bool (*remove_func) (void*, char*), int (*size_func) (void*)) { */
/* int seed = rand(); */
/* bool succeeded = fuzzy_test_trie_seed(seed, count, len, init_func, free_func, add_func, remove_func, size_func); */
/* if (!succeeded) { */
/* return seed; */
/* } */
/* return -1; */
/* } */
#endif

View File

@ -1,189 +0,0 @@
#include "test.h"
#include "trie.h"
#include "fuzzy.h"
#define TEST_SIZE(ct, size) \
TEST_CHECK(trie_size(ct) == size); \
TEST_MSG("Size: %zu", trie_size(ct))
# define TRIE_INIT() \
Trie *ct; \
trie_init(&ct, NULL); \
TEST_CHECK(ct != NULL)
void test_init() {
TRIE_INIT();
TEST_SIZE(ct, 0);
trie_free(ct);
}
void test_add_one() {
TRIE_INIT();
Entry *entry = entry_new(Redirect, "");
const char* string = "this is a test";
TEST_CHECK(trie_add(ct, string, entry) == Ok);
Entry *entry2;
TEST_CHECK(trie_search(ct, &entry2, string) == Ok);
TEST_CHECK(entry == entry2);
TEST_SIZE(ct, 1);
trie_free(ct);
}
void test_add_prefix() {
TRIE_INIT();
const char *s1 = "halloween-2022";
const char *s2 = "halloween-202";
Entry *entry1 = entry_new(Redirect, "");
Entry *entry2 = entry_new(Redirect, "");
TEST_CHECK(trie_add(ct, s1, entry1) == Ok);
TEST_CHECK(trie_add(ct, s2, entry2) == Ok);
Entry *entry3;
TEST_CHECK(trie_search(ct, &entry3, s1) == Ok);
TEST_CHECK(entry3 == entry1);
entry2 = NULL;
TEST_CHECK(trie_search(ct, &entry3, s2) == Ok);
TEST_CHECK(entry3 == entry2);
trie_free(ct);
}
void test_search_not_present() {
TRIE_INIT();
TEST_CHECK(trie_add(ct, "this string exists", NULL) == Ok);
Entry *entry;
TEST_CHECK(trie_search(ct, &entry, "this string does not exist") == NotFound);
trie_free(ct);
}
void test_add_more() {
TRIE_INIT();
const char* one = "one";
const char* two = "two";
const char* twenty = "twenty";
const char* twentytwo = "twentytwo";
Entry *entry = entry_new(Redirect, "");
TEST_CHECK(trie_add(ct, one, entry) == Ok);
TEST_CHECK(trie_add(ct, two, entry) == Ok);
TEST_CHECK(trie_add(ct, twenty, entry) == Ok);
TEST_CHECK(trie_add(ct, twentytwo, entry) == Ok);
TEST_SIZE(ct, 4);
Entry *entry2;
TEST_CHECK(trie_search(ct, &entry2, one) == Ok);
TEST_CHECK(entry2 == entry);
entry2 = NULL;
TEST_CHECK(trie_search(ct, &entry2, two) == Ok);
TEST_CHECK(entry2 == entry);
entry2 = NULL;
TEST_CHECK(trie_search(ct, &entry2, twenty) == Ok);
TEST_CHECK(entry2 == entry);
entry2 = NULL;
TEST_CHECK(trie_search(ct, &entry2, twentytwo) == Ok);
TEST_CHECK(entry2 == entry);
entry2 = NULL;
TEST_CHECK(trie_add(ct, one, NULL) == AlreadyPresent);
TEST_CHECK(trie_add(ct, two, NULL) == AlreadyPresent);
TEST_CHECK(trie_add(ct, twenty, NULL) == AlreadyPresent);
TEST_CHECK(trie_add(ct, twentytwo, NULL) == AlreadyPresent);
trie_free(ct);
}
/* void test_remove_one() { */
/* Trie* ct = trie_init(); */
/* TEST_CHECK(ct != NULL); */
/* const char* string = "this is a test"; */
/* TEST_CHECK(trie_add(ct, string, NULL)); */
/* TEST_SIZE(ct, 1); */
/* TEST_CHECK(trie_remove(ct, string)); */
/* TEST_SIZE(ct, 0); */
/* trie_free(ct); */
/* } */
/* void test_remove_more() { */
/* Trie* ct = trie_init(); */
/* TEST_CHECK(ct != NULL); */
/* const char* one = "one"; */
/* const char* two = "two"; */
/* const char* twenty = "twenty"; */
/* const char* twentytwo = "twentytwo"; */
/* TEST_CHECK(trie_add(ct, one, NULL)); */
/* TEST_CHECK(trie_add(ct, two, NULL)); */
/* TEST_CHECK(trie_add(ct, twenty, NULL)); */
/* TEST_CHECK(trie_add(ct, twentytwo, NULL)); */
/* TEST_SIZE(ct, 4); */
/* TEST_CHECK(trie_remove(ct, one)); */
/* TEST_CHECK(trie_remove(ct, two)); */
/* TEST_CHECK(trie_remove(ct, twenty)); */
/* TEST_CHECK(trie_remove(ct, twentytwo)); */
/* TEST_SIZE(ct, 0); */
/* trie_free(ct); */
/* } */
/* void test_remove_not_present() { */
/* Trie* ct = trie_init(); */
/* TEST_CHECK(ct != NULL); */
/* TEST_CHECK(trie_add(ct, "this string exists", NULL)); */
/* TEST_CHECK(!trie_remove(ct, "this string does not exist")); */
/* trie_free(ct); */
/* } */
// Test seeds that are known to fail so we don't get regressions
void test_fuzzy_set() {
FuzzyConfig configs[] = {
{ 403318210, 5, 500},
{ 588218406, 16, 460},
{ 297512224, 21, 500},
{ 403318210, 5, 500}
};
int count = sizeof(configs) / sizeof(FuzzyConfig);
int res;
for (int i = 0; i < count; i++) {
res = fuzzy_test_trie_seed(configs[i]);
TEST_CHECK_(res == 0,
"Failed config, seed = %i, len = %i, count = %i, code=%i", configs[i].seed, configs[i].word_length, configs[i].word_count, res);
}
}
TEST_LIST = {
{"trie init",test_init },
{ "trie add one",test_add_one },
{ "trie add more",test_add_more },
{ "trie search not present",test_search_not_present},
/* { "trie remove one",test_remove_one }, */
/* { "trie remove more",test_remove_more }, */
/* { "trie remove not present",test_remove_not_present}, */
{ "trie fuzzy set", test_fuzzy_set },
{ NULL, NULL}
};

View File

@ -1,34 +0,0 @@
#include "test.h"
#include "trie.h"
#include "fuzzy.h"
void test_fuzzy() {
// Randomize seed
srand(time(NULL));
FuzzyConfig config;
int counter = 0;
int res;
for (int len = 1; len < 25; len += 5) {
for (int count = 10; count <= 500; count += 10) {
for (int i = 0; i < 50; i++) {
counter++;
config.seed = rand();
config.word_length = len;
config.word_count = count;
res = fuzzy_test_trie_seed(config);
TEST_CHECK_(res == 0,
"Failed config, seed = %i, len = %i, count = %i, code = %i", config.seed, config.word_length, config.word_count, res);
}
}
}
TEST_MSG("fuzzy tests done = %i", counter);
}
TEST_LIST = {
{ "customtrie fuzzy", test_fuzzy },
{ NULL, NULL}
};