forked from vieter-v/vieter
Compare commits
No commits in common. "8c0315dea679fe52daa23d429310a7db645fbde8" and "f63cbd77d3e943d7f463a54d362833910a2fcd61" have entirely different histories.
8c0315dea6
...
f63cbd77d3
2
Makefile
2
Makefile
|
|
@ -1,6 +1,6 @@
|
|||
# =====CONFIG=====
|
||||
SRC_DIR := src
|
||||
SOURCES != find '$(SRC_DIR)' -\( -iname '*.v' -or -iname '*.h' -or -iname '*.c' -\)
|
||||
SOURCES != find '$(SRC_DIR)' -iname '*.v'
|
||||
|
||||
V_PATH ?= v
|
||||
V := $(V_PATH) -showcc -gc boehm -W -d use_openssl -skip-unused
|
||||
|
|
|
|||
|
|
@ -92,7 +92,7 @@ pub fn (mut q BuildJobQueue) insert(input InsertConfig) ! {
|
|||
q.default_schedule
|
||||
}
|
||||
|
||||
job.timestamp = ce.next_from_now()
|
||||
job.timestamp = ce.next_from_now()!
|
||||
job.ce = ce
|
||||
} else {
|
||||
job.timestamp = time.now()
|
||||
|
|
@ -105,8 +105,8 @@ pub fn (mut q BuildJobQueue) insert(input InsertConfig) ! {
|
|||
// reschedule the given job by calculating the next timestamp and re-adding it
|
||||
// to its respective queue. This function is called by the pop functions
|
||||
// *after* having pop'ed the job.
|
||||
fn (mut q BuildJobQueue) reschedule(job BuildJob, arch string) {
|
||||
new_timestamp := job.ce.next_from_now()
|
||||
fn (mut q BuildJobQueue) reschedule(job BuildJob, arch string) ! {
|
||||
new_timestamp := job.ce.next_from_now()!
|
||||
|
||||
new_job := BuildJob{
|
||||
...job
|
||||
|
|
@ -168,7 +168,10 @@ pub fn (mut q BuildJobQueue) pop(arch string) ?BuildJob {
|
|||
job = q.queues[arch].pop()?
|
||||
|
||||
if !job.single {
|
||||
q.reschedule(job, arch)
|
||||
// TODO how do we handle this properly? Is it even possible for a
|
||||
// cron expression to not return a next time if it's already been
|
||||
// used before?
|
||||
q.reschedule(job, arch) or {}
|
||||
}
|
||||
|
||||
return job
|
||||
|
|
@ -195,7 +198,8 @@ pub fn (mut q BuildJobQueue) pop_n(arch string, n int) []BuildJob {
|
|||
job = q.queues[arch].pop() or { break }
|
||||
|
||||
if !job.single {
|
||||
q.reschedule(job, arch)
|
||||
// TODO idem
|
||||
q.reschedule(job, arch) or {}
|
||||
}
|
||||
|
||||
out << job
|
||||
|
|
|
|||
|
|
@ -22,7 +22,7 @@ pub fn cmd() cli.Command {
|
|||
ce := cron.parse_expression(cmd.args.join(' '))!
|
||||
count := cmd.flags.get_int('count')!
|
||||
|
||||
for t in ce.next_n(time.now(), count) {
|
||||
for t in ce.next_n(time.now(), count)! {
|
||||
println(t)
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -15,7 +15,7 @@ void ce_free(cron_expression *ce) {
|
|||
free(ce);
|
||||
}
|
||||
|
||||
void ce_next(cron_simple_time *out, cron_expression *ce, cron_simple_time *ref) {
|
||||
int ce_next(cron_simple_time *out, cron_expression *ce, cron_simple_time *ref) {
|
||||
// For all of these values, the rule is the following: if their value is
|
||||
// the length of their respective array in the CronExpression object, that
|
||||
// means we've looped back around. This means that the "bigger" value has
|
||||
|
|
@ -84,6 +84,11 @@ void ce_next(cron_simple_time *out, cron_expression *ce, cron_simple_time *ref)
|
|||
|
||||
while (out->day > month_days[ce->months[month_index % ce->month_count] - 1]) {
|
||||
month_index++;
|
||||
|
||||
// TODO find out if this can happen
|
||||
if (month_index == 2 * ce->month_count) {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -94,14 +99,16 @@ void ce_next(cron_simple_time *out, cron_expression *ce, cron_simple_time *ref)
|
|||
} else {
|
||||
out->year = ref->year;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void ce_next_from_now(cron_simple_time *out, cron_expression *ce) {
|
||||
int ce_next_from_now(cron_simple_time *out, cron_expression *ce) {
|
||||
time_t t = time(NULL);
|
||||
struct tm gm;
|
||||
gmtime_r(&t, &gm);
|
||||
|
||||
cron_simple_time ref = {
|
||||
struct cron_simple_time ref = {
|
||||
.year = gm.tm_year,
|
||||
// tm_mon goes from 0 to 11
|
||||
.month = gm.tm_mon + 1,
|
||||
|
|
@ -110,5 +117,5 @@ void ce_next_from_now(cron_simple_time *out, cron_expression *ce) {
|
|||
.minute = gm.tm_min
|
||||
};
|
||||
|
||||
ce_next(out, ce, &ref);
|
||||
return ce_next(out, ce, &ref);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,3 @@
|
|||
#ifndef VIETER_CRON
|
||||
#define VIETER_CRON
|
||||
|
||||
#include <time.h>
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
|
|
@ -10,8 +7,7 @@ typedef enum cron_parse_error {
|
|||
cron_parse_ok = 0,
|
||||
cron_parse_invalid_expression = 1,
|
||||
cron_parse_invalid_number = 2,
|
||||
cron_parse_out_of_range = 3,
|
||||
cron_parse_too_many_parts = 4
|
||||
cron_parse_out_of_range = 3
|
||||
} cron_parse_error;
|
||||
|
||||
typedef struct cron_expression {
|
||||
|
|
@ -37,10 +33,8 @@ cron_expression *ce_init();
|
|||
|
||||
void cron_ce_free(cron_expression *ce);
|
||||
|
||||
void cron_ce_next(cron_simple_time *out, cron_expression *ce, cron_simple_time *ref);
|
||||
int cron_ce_next(cron_simple_time *out, cron_expression *ce, cron_simple_time *ref);
|
||||
|
||||
void cron_ce_next_from_now(cron_simple_time *out, cron_expression *ce);
|
||||
int cron_ce_next_from_now(cron_simple_time *out, cron_expression *ce);
|
||||
|
||||
enum cron_parse_error cron_ce_parse_expression(cron_expression *out, char *s);
|
||||
|
||||
#endif
|
||||
|
|
|
|||
|
|
@ -1,28 +1,21 @@
|
|||
#include "expression.h"
|
||||
|
||||
const uint8_t month_days[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
|
||||
|
||||
// Allowed value ranges for the minute, hour, day and month field
|
||||
const uint8_t min[4] = {0, 0, 1, 1};
|
||||
const uint8_t max[4] = {59, 23, 31, 12};
|
||||
|
||||
const uint8_t min_parts = 2;
|
||||
const uint8_t max_parts = 4;
|
||||
|
||||
// Convert a string into a uint8_t value by parsing it using atoi and checking
|
||||
// Convert a string a uint8_t value by parsing it using atoi and checking
|
||||
// whether it's contained within the given range
|
||||
#define SAFE_ATOI(v,s,min,max) \
|
||||
int _##v = atoi(s); \
|
||||
if ((_##v) == 0 && strcmp((s), "0") != 0) { \
|
||||
return cron_parse_invalid_number; \
|
||||
} \
|
||||
if (((_##v) < (min)) || ((_##v) > (max))) { \
|
||||
if (v < (min) || v > (max)) { \
|
||||
return cron_parse_out_of_range; \
|
||||
} \
|
||||
v = (uint8_t) (_##v);
|
||||
|
||||
#define MAX(x, y) (((x) > (y)) ? (x) : (y))
|
||||
|
||||
/**
|
||||
* Given a range expression, produce a bit field defining what numbers in the
|
||||
* min-max range the expression represents. Bit 0 (starting from the
|
||||
|
|
@ -39,7 +32,7 @@ const uint8_t max_parts = 4;
|
|||
* - a/c
|
||||
* - a-b/c
|
||||
*/
|
||||
cron_parse_error ce_parse_range(uint64_t *out, char *s, uint8_t min, uint8_t max) {
|
||||
enum cron_parse_error ce_parse_range(uint64_t *out, char *s, uint8_t min, uint8_t max) {
|
||||
// The * expression means "every possible value"
|
||||
if (s[0] == '*') {
|
||||
// A '*' is only valid on its own
|
||||
|
|
@ -105,7 +98,7 @@ cron_parse_error ce_parse_range(uint64_t *out, char *s, uint8_t min, uint8_t max
|
|||
* min-max range the part represents. A part consists of one or more range
|
||||
* expressions, separated by commas.
|
||||
*/
|
||||
cron_parse_error ce_parse_part(uint64_t *out, char *s, uint8_t min, uint8_t max) {
|
||||
enum cron_parse_error ce_parse_part(uint64_t *out, char *s, uint8_t min, uint8_t max) {
|
||||
*out = 0;
|
||||
|
||||
char *next;
|
||||
|
|
@ -182,30 +175,28 @@ enum cron_parse_error ce_parse_expression(cron_expression *out, char *s) {
|
|||
s = strdup(s);
|
||||
char *orig_s = s;
|
||||
|
||||
enum cron_parse_error res = cron_parse_ok;
|
||||
uint64_t bfs[max_parts];
|
||||
|
||||
// First we divide the input string into its parts, divided by spaces.
|
||||
// Each part is delimited by a NULL byte.
|
||||
uint8_t part_count = 0;
|
||||
char *parts[max_parts];
|
||||
|
||||
char *next;
|
||||
enum cron_parse_error res = cron_parse_ok;
|
||||
uint64_t bfs[4];
|
||||
|
||||
// Skip leading spaces
|
||||
size_t offset = 0;
|
||||
|
||||
while (s[offset] == ' ') {
|
||||
offset++;
|
||||
while (s[0] == ' ') {
|
||||
s++;
|
||||
}
|
||||
|
||||
s += offset;
|
||||
|
||||
while (part_count < max_parts && ((next = strchr(s, ' ')) != NULL)) {
|
||||
while (part_count < 4 && ((next = strchr(s, ' ')) != NULL)) {
|
||||
next[0] = '\0';
|
||||
parts[part_count] = s;
|
||||
res = ce_parse_part(&bfs[part_count], s, min[part_count], max[part_count]);
|
||||
|
||||
if (res != cron_parse_ok) {
|
||||
goto end;
|
||||
}
|
||||
|
||||
size_t offset = 1;
|
||||
|
||||
// Skip multiple spaces
|
||||
offset = 1;
|
||||
while (next[offset] == ' ') {
|
||||
offset++;
|
||||
}
|
||||
|
|
@ -214,87 +205,34 @@ enum cron_parse_error ce_parse_expression(cron_expression *out, char *s) {
|
|||
part_count++;
|
||||
}
|
||||
|
||||
// The loop exited because we already have 4 parts, yet there's still at
|
||||
// least one more part that follows.
|
||||
if (next != NULL) {
|
||||
res = cron_parse_too_many_parts;
|
||||
} else if (s[0] != '\0') {
|
||||
// There's one more excessive trailing part
|
||||
if (part_count == max_parts) {
|
||||
res = cron_parse_too_many_parts;
|
||||
// Parse final trailing part
|
||||
if (part_count < 4 && s[0] != '\0') {
|
||||
res = ce_parse_part(&bfs[part_count], s, min[part_count], max[part_count]);
|
||||
|
||||
if (res != cron_parse_ok) {
|
||||
goto end;
|
||||
}
|
||||
|
||||
parts[part_count] = s;
|
||||
part_count++;
|
||||
}
|
||||
|
||||
|
||||
// We now parse the parts in reverse. This is because the month part
|
||||
// determines the maximum value of the day part.
|
||||
|
||||
uint64_t bit_field = 0;
|
||||
|
||||
// Months
|
||||
if (part_count >= 4) {
|
||||
res = ce_parse_part(&bit_field, parts[3], min[3], max[3]);
|
||||
|
||||
if (res != cron_parse_ok) {
|
||||
goto end;
|
||||
}
|
||||
|
||||
out->month_count = bf_to_nums(&out->months, bit_field, min[3], max[3]);
|
||||
}
|
||||
// If months aren't provided, they're replaced with a *
|
||||
else {
|
||||
out->month_count = bf_to_nums(&out->months, ~0, min[3], max[3]);
|
||||
}
|
||||
|
||||
// Determine what the largest allowed day value is, given the months
|
||||
uint8_t max_day_value = 0;
|
||||
|
||||
for (uint8_t i = 0; i < out->month_count; i++) {
|
||||
max_day_value = MAX(max_day_value, month_days[out->months[i] - 1]);
|
||||
}
|
||||
|
||||
// Days
|
||||
if (part_count >= 3) {
|
||||
bit_field = 0;
|
||||
|
||||
res = ce_parse_part(&bit_field, parts[2], min[2], max_day_value);
|
||||
|
||||
if (res != cron_parse_ok) {
|
||||
goto end;
|
||||
}
|
||||
|
||||
out->day_count = bf_to_nums(&out->days, bit_field, min[2], max_day_value);
|
||||
}
|
||||
// If days aren't provided, they're replaced with a *
|
||||
else {
|
||||
out->day_count = bf_to_nums(&out->days, ~0, min[2], max_day_value);
|
||||
}
|
||||
|
||||
// Hours
|
||||
bit_field = 0;
|
||||
|
||||
res = ce_parse_part(&bit_field, parts[1], min[1], max[1]);
|
||||
|
||||
if (res != cron_parse_ok) {
|
||||
// At least two parts need to be provided
|
||||
if (part_count < 2) {
|
||||
res = cron_parse_invalid_expression;
|
||||
goto end;
|
||||
}
|
||||
|
||||
out->hour_count = bf_to_nums(&out->hours, bit_field, min[1], max[1]);
|
||||
|
||||
// Minutes
|
||||
bit_field = 0;
|
||||
|
||||
res = ce_parse_part(&bit_field, parts[0], min[0], max[0]);
|
||||
|
||||
if (res != cron_parse_ok) {
|
||||
goto end;
|
||||
// Ensure there's always 4 parts, as expressions can have between 2 and 4 parts
|
||||
while (part_count < 4) {
|
||||
// Expression is augmented with '*' expressions
|
||||
bfs[part_count] = ~0;
|
||||
part_count++;
|
||||
}
|
||||
|
||||
out->minute_count = bf_to_nums(&out->minutes, bit_field, min[0], max[0]);
|
||||
out->minute_count = bf_to_nums(&out->minutes, bfs[0], min[0], max[0]);
|
||||
out->hour_count = bf_to_nums(&out->hours, bfs[1], min[1], max[1]);
|
||||
out->day_count = bf_to_nums(&out->days, bfs[2], min[2], max[2]);
|
||||
out->month_count = bf_to_nums(&out->months, bfs[3], min[3], max[3]);
|
||||
|
||||
end:
|
||||
// s is cloned
|
||||
|
|
|
|||
|
|
@ -32,8 +32,8 @@ fn C.ce_init() &C.cron_expression
|
|||
|
||||
fn C.ce_free(ce &C.cron_expression)
|
||||
|
||||
fn C.ce_next(out &C.cron_simple_time, ce &C.cron_expression, ref &C.cron_simple_time)
|
||||
fn C.ce_next(out &C.cron_simple_time, ce &C.cron_expression, ref &C.cron_simple_time) int
|
||||
|
||||
fn C.ce_next_from_now(out &C.cron_simple_time, ce &C.cron_expression)
|
||||
fn C.ce_next_from_now(out &C.cron_simple_time, ce &C.cron_expression) int
|
||||
|
||||
fn C.ce_parse_expression(out &C.cron_expression, s &char) int
|
||||
|
|
|
|||
|
|
@ -2,23 +2,22 @@ module cron
|
|||
|
||||
import time
|
||||
|
||||
[unsafe]
|
||||
pub fn (ce &Expression) free() {
|
||||
C.ce_free(ce)
|
||||
}
|
||||
|
||||
pub fn parse_expression(exp string) !&Expression {
|
||||
out := C.ce_init()
|
||||
res := C.ce_parse_expression(out, exp.str)
|
||||
|
||||
if res != 0 {
|
||||
return error(res.str())
|
||||
return error('yuhh')
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
pub fn (ce &Expression) next(ref time.Time) time.Time {
|
||||
pub fn (ce &Expression) free() {
|
||||
C.ce_free(ce)
|
||||
}
|
||||
|
||||
pub fn (ce &Expression) next(ref time.Time) !time.Time {
|
||||
st := SimpleTime{
|
||||
year: ref.year
|
||||
month: ref.month
|
||||
|
|
@ -28,7 +27,11 @@ pub fn (ce &Expression) next(ref time.Time) time.Time {
|
|||
}
|
||||
|
||||
out := SimpleTime{}
|
||||
C.ce_next(&out, ce, &st)
|
||||
res := C.ce_next(&out, ce, &st)
|
||||
|
||||
if res != 0 {
|
||||
return error('yuhh')
|
||||
}
|
||||
|
||||
return time.new_time(time.Time{
|
||||
year: out.year
|
||||
|
|
@ -39,9 +42,13 @@ pub fn (ce &Expression) next(ref time.Time) time.Time {
|
|||
})
|
||||
}
|
||||
|
||||
pub fn (ce &Expression) next_from_now() time.Time {
|
||||
pub fn (ce &Expression) next_from_now() !time.Time {
|
||||
out := SimpleTime{}
|
||||
C.ce_next_from_now(&out, ce)
|
||||
res := C.ce_next_from_now(&out, ce)
|
||||
|
||||
if res != 0 {
|
||||
return error('yuhh')
|
||||
}
|
||||
|
||||
return time.new_time(time.Time{
|
||||
year: out.year
|
||||
|
|
@ -54,13 +61,13 @@ pub fn (ce &Expression) next_from_now() time.Time {
|
|||
|
||||
// next_n returns the n next occurences of the expression, given a starting
|
||||
// time.
|
||||
pub fn (ce &Expression) next_n(ref time.Time, n int) []time.Time {
|
||||
pub fn (ce &Expression) next_n(ref time.Time, n int) ![]time.Time {
|
||||
mut times := []time.Time{cap: n}
|
||||
|
||||
times << ce.next(ref)
|
||||
times << ce.next(ref)!
|
||||
|
||||
for i in 1 .. n {
|
||||
times << ce.next(times[i - 1])
|
||||
times << ce.next(times[i - 1])!
|
||||
}
|
||||
|
||||
return times
|
||||
|
|
|
|||
|
|
@ -8,7 +8,7 @@ fn util_test_time(exp string, t1_str string, t2_str string) ! {
|
|||
t1 := parse(t1_str)!
|
||||
t2 := parse(t2_str)!
|
||||
|
||||
t3 := ce.next(t1)
|
||||
t3 := ce.next(t1)!
|
||||
|
||||
assert t2.year == t3.year
|
||||
assert t2.month == t3.month
|
||||
|
|
@ -22,7 +22,7 @@ fn test_next_simple() ! {
|
|||
// util_test_time('0 3', '2002-01-01 00:00:00', '2002-01-01 03:00:00')!
|
||||
|
||||
// Overlap to next day
|
||||
mut exp := '0 3 '
|
||||
mut exp := '0 3 '
|
||||
util_test_time(exp, '2002-01-01 03:00:00', '2002-01-02 03:00:00')!
|
||||
util_test_time(exp, '2002-01-01 04:00:00', '2002-01-02 03:00:00')!
|
||||
|
||||
|
|
|
|||
|
|
@ -9,7 +9,11 @@ const fallback_log_removal_frequency = 24 * time.hour
|
|||
|
||||
// log_removal_daemon removes old build logs every `log_removal_frequency`.
|
||||
fn (mut app App) log_removal_daemon(schedule cron.Expression) {
|
||||
mut start_time := time.Time{}
|
||||
|
||||
for {
|
||||
start_time = time.now()
|
||||
|
||||
mut too_old_timestamp := time.now().add_days(-app.conf.max_log_age)
|
||||
|
||||
app.linfo('Cleaning logs before $too_old_timestamp')
|
||||
|
|
@ -47,7 +51,12 @@ fn (mut app App) log_removal_daemon(schedule cron.Expression) {
|
|||
app.linfo('Cleaned $counter logs ($failed failed)')
|
||||
|
||||
// Sleep until the next cycle
|
||||
next_time := schedule.next_from_now()
|
||||
next_time := schedule.next_from_now() or {
|
||||
app.lerror("Log removal daemon couldn't calculate next time: $err.msg(); fallback to $server.fallback_log_removal_frequency")
|
||||
|
||||
start_time.add(server.fallback_log_removal_frequency)
|
||||
}
|
||||
|
||||
time.sleep(next_time - time.now())
|
||||
}
|
||||
}
|
||||
|
|
|
|||
Loading…
Reference in New Issue