refactor: Subsituted old hash generation with a proper implementation.
							parent
							
								
									bbdc2fbd6e
								
							
						
					
					
						commit
						1ccd4101af
					
				| 
						 | 
				
			
			@ -6,8 +6,8 @@
 | 
			
		|||
#include <string.h>
 | 
			
		||||
#include <stdlib.h>
 | 
			
		||||
 | 
			
		||||
#include "archive.h"
 | 
			
		||||
#include "archive_entry.h"
 | 
			
		||||
#include <archive.h>
 | 
			
		||||
#include <archive_entry.h>
 | 
			
		||||
 | 
			
		||||
#include "package_info.h"
 | 
			
		||||
#include "dynarray.h"
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -0,0 +1,34 @@
 | 
			
		|||
/*********************************************************************
 | 
			
		||||
* Filename:   sha256.h
 | 
			
		||||
* Author:     Brad Conte (brad AT bradconte.com)
 | 
			
		||||
* Copyright:
 | 
			
		||||
* Disclaimer: This code is presented "as is" without any guarantees.
 | 
			
		||||
* Details:    Defines the API for the corresponding SHA1 implementation.
 | 
			
		||||
*********************************************************************/
 | 
			
		||||
 | 
			
		||||
#ifndef SHA256_H
 | 
			
		||||
#define SHA256_H
 | 
			
		||||
 | 
			
		||||
/*************************** HEADER FILES ***************************/
 | 
			
		||||
#include <stddef.h>
 | 
			
		||||
 | 
			
		||||
/****************************** MACROS ******************************/
 | 
			
		||||
#define SHA256_BLOCK_SIZE 32            // SHA256 outputs a 32 byte digest
 | 
			
		||||
 | 
			
		||||
/**************************** DATA TYPES ****************************/
 | 
			
		||||
typedef unsigned char BYTE;             // 8-bit byte
 | 
			
		||||
typedef unsigned int  WORD;             // 32-bit word, change to "long" for 16-bit machines
 | 
			
		||||
 | 
			
		||||
typedef struct {
 | 
			
		||||
	BYTE data[64];
 | 
			
		||||
	WORD datalen;
 | 
			
		||||
	unsigned long long bitlen;
 | 
			
		||||
	WORD state[8];
 | 
			
		||||
} SHA256_CTX;
 | 
			
		||||
 | 
			
		||||
/*********************** FUNCTION DECLARATIONS **********************/
 | 
			
		||||
void sha256_init(SHA256_CTX *ctx);
 | 
			
		||||
void sha256_update(SHA256_CTX *ctx, const BYTE data[], size_t len);
 | 
			
		||||
void sha256_final(SHA256_CTX *ctx, BYTE hash[]);
 | 
			
		||||
 | 
			
		||||
#endif   // SHA256_H
 | 
			
		||||
| 
						 | 
				
			
			@ -1,4 +1,5 @@
 | 
			
		|||
#include "package.h"
 | 
			
		||||
#include "sha256.h"
 | 
			
		||||
 | 
			
		||||
#define SMALL_BUFF_SIZE 128
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -121,12 +122,52 @@ Pkg *package_read_archive(const char *pkg_path) {
 | 
			
		|||
}
 | 
			
		||||
 | 
			
		||||
void sha256sum(Pkg *pkg, char *res) {
 | 
			
		||||
	char command[SMALL_BUFF_SIZE];
 | 
			
		||||
	snprintf(command, SMALL_BUFF_SIZE, "sha256sum %s", pkg->path);
 | 
			
		||||
	FILE *p = popen(command, "r");
 | 
			
		||||
	FILE *f = fopen(pkg->path, "r");
 | 
			
		||||
	fseek(f, 0, SEEK_END);
 | 
			
		||||
	size_t size = ftell(f);
 | 
			
		||||
	rewind(f);
 | 
			
		||||
	unsigned char *in = malloc(size);
 | 
			
		||||
	fread(in, 1, size, f);
 | 
			
		||||
	fclose(f);
 | 
			
		||||
 | 
			
		||||
	fgets(res, 65, p);
 | 
			
		||||
	pclose(p);
 | 
			
		||||
	unsigned char hash[32];
 | 
			
		||||
	SHA256_CTX *ctx = malloc(sizeof(SHA256_CTX));
 | 
			
		||||
 | 
			
		||||
	sha256_init(ctx);
 | 
			
		||||
	sha256_update(ctx, in, size);
 | 
			
		||||
	sha256_final(ctx, hash);
 | 
			
		||||
 | 
			
		||||
	free(in);
 | 
			
		||||
	free(ctx);
 | 
			
		||||
 | 
			
		||||
	// We need to convert the bytes in the hash to get a string representation of its hex values
 | 
			
		||||
	// i.e. turn 1001 1111 into the string "9f"
 | 
			
		||||
	// Each byte of the hash is going to turn into two bytes in the final string
 | 
			
		||||
	// so we are going to convert each half byte into a char
 | 
			
		||||
	unsigned int half_byte = 0;
 | 
			
		||||
	int j = 0;
 | 
			
		||||
 | 
			
		||||
	// We advance in the string 2 bytes for every one byte of the hash
 | 
			
		||||
	for (int i = 0; i < 32; i++) {
 | 
			
		||||
		// We transform the first half byte into the second character to keep
 | 
			
		||||
		// each byte from becoming reversed in the final string
 | 
			
		||||
		half_byte = hash[i] & 0b1111;
 | 
			
		||||
		if (half_byte < 10) {
 | 
			
		||||
			res[j+1] = half_byte + 48;
 | 
			
		||||
		} else {
 | 
			
		||||
			res[j+1] = half_byte + 87;
 | 
			
		||||
		}
 | 
			
		||||
		hash[i] = hash[i] >> 4;
 | 
			
		||||
		half_byte = hash[i] & 0b1111;
 | 
			
		||||
		if (half_byte < 10) {
 | 
			
		||||
			res[j] = half_byte + 48;
 | 
			
		||||
		} else {
 | 
			
		||||
			res[j] = half_byte + 87;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		j += 2;
 | 
			
		||||
	}
 | 
			
		||||
	res[j] = '\0';
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
char *package_to_description(Pkg *pkg) {
 | 
			
		||||
| 
						 | 
				
			
			@ -153,6 +194,7 @@ char *package_to_description(Pkg *pkg) {
 | 
			
		|||
 | 
			
		||||
	char checksum[65];
 | 
			
		||||
	sha256sum(pkg, checksum);
 | 
			
		||||
 | 
			
		||||
	snprintf(aux, SMALL_BUFF_SIZE, "\n\n%%SHA256SUM%%\n%s", checksum);
 | 
			
		||||
	if (buff_size < strlen(description) + SMALL_BUFF_SIZE + 1) {
 | 
			
		||||
		description = realloc(description, buff_size * 2);
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -0,0 +1,158 @@
 | 
			
		|||
/*********************************************************************
 | 
			
		||||
* Filename:   sha256.c
 | 
			
		||||
* Author:     Brad Conte (brad AT bradconte.com)
 | 
			
		||||
* Copyright:
 | 
			
		||||
* Disclaimer: This code is presented "as is" without any guarantees.
 | 
			
		||||
* Details:    Implementation of the SHA-256 hashing algorithm.
 | 
			
		||||
              SHA-256 is one of the three algorithms in the SHA2
 | 
			
		||||
              specification. The others, SHA-384 and SHA-512, are not
 | 
			
		||||
              offered in this implementation.
 | 
			
		||||
              Algorithm specification can be found here:
 | 
			
		||||
               * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
 | 
			
		||||
              This implementation uses little endian byte order.
 | 
			
		||||
*********************************************************************/
 | 
			
		||||
 | 
			
		||||
/*************************** HEADER FILES ***************************/
 | 
			
		||||
#include <stdlib.h>
 | 
			
		||||
#include <memory.h>
 | 
			
		||||
#include "sha256.h"
 | 
			
		||||
 | 
			
		||||
/****************************** MACROS ******************************/
 | 
			
		||||
#define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))
 | 
			
		||||
#define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))
 | 
			
		||||
 | 
			
		||||
#define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
 | 
			
		||||
#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
 | 
			
		||||
#define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
 | 
			
		||||
#define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
 | 
			
		||||
#define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
 | 
			
		||||
#define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))
 | 
			
		||||
 | 
			
		||||
/**************************** VARIABLES *****************************/
 | 
			
		||||
static const WORD k[64] = {
 | 
			
		||||
	0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5,
 | 
			
		||||
	0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174,
 | 
			
		||||
	0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da,
 | 
			
		||||
	0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967,
 | 
			
		||||
	0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85,
 | 
			
		||||
	0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070,
 | 
			
		||||
	0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3,
 | 
			
		||||
	0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/*********************** FUNCTION DEFINITIONS ***********************/
 | 
			
		||||
void sha256_transform(SHA256_CTX *ctx, const BYTE data[])
 | 
			
		||||
{
 | 
			
		||||
	WORD a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];
 | 
			
		||||
 | 
			
		||||
	for (i = 0, j = 0; i < 16; ++i, j += 4)
 | 
			
		||||
		m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]);
 | 
			
		||||
	for ( ; i < 64; ++i)
 | 
			
		||||
		m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];
 | 
			
		||||
 | 
			
		||||
	a = ctx->state[0];
 | 
			
		||||
	b = ctx->state[1];
 | 
			
		||||
	c = ctx->state[2];
 | 
			
		||||
	d = ctx->state[3];
 | 
			
		||||
	e = ctx->state[4];
 | 
			
		||||
	f = ctx->state[5];
 | 
			
		||||
	g = ctx->state[6];
 | 
			
		||||
	h = ctx->state[7];
 | 
			
		||||
 | 
			
		||||
	for (i = 0; i < 64; ++i) {
 | 
			
		||||
		t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i];
 | 
			
		||||
		t2 = EP0(a) + MAJ(a,b,c);
 | 
			
		||||
		h = g;
 | 
			
		||||
		g = f;
 | 
			
		||||
		f = e;
 | 
			
		||||
		e = d + t1;
 | 
			
		||||
		d = c;
 | 
			
		||||
		c = b;
 | 
			
		||||
		b = a;
 | 
			
		||||
		a = t1 + t2;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	ctx->state[0] += a;
 | 
			
		||||
	ctx->state[1] += b;
 | 
			
		||||
	ctx->state[2] += c;
 | 
			
		||||
	ctx->state[3] += d;
 | 
			
		||||
	ctx->state[4] += e;
 | 
			
		||||
	ctx->state[5] += f;
 | 
			
		||||
	ctx->state[6] += g;
 | 
			
		||||
	ctx->state[7] += h;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void sha256_init(SHA256_CTX *ctx)
 | 
			
		||||
{
 | 
			
		||||
	ctx->datalen = 0;
 | 
			
		||||
	ctx->bitlen = 0;
 | 
			
		||||
	ctx->state[0] = 0x6a09e667;
 | 
			
		||||
	ctx->state[1] = 0xbb67ae85;
 | 
			
		||||
	ctx->state[2] = 0x3c6ef372;
 | 
			
		||||
	ctx->state[3] = 0xa54ff53a;
 | 
			
		||||
	ctx->state[4] = 0x510e527f;
 | 
			
		||||
	ctx->state[5] = 0x9b05688c;
 | 
			
		||||
	ctx->state[6] = 0x1f83d9ab;
 | 
			
		||||
	ctx->state[7] = 0x5be0cd19;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void sha256_update(SHA256_CTX *ctx, const BYTE data[], size_t len)
 | 
			
		||||
{
 | 
			
		||||
	WORD i;
 | 
			
		||||
 | 
			
		||||
	for (i = 0; i < len; ++i) {
 | 
			
		||||
		ctx->data[ctx->datalen] = data[i];
 | 
			
		||||
		ctx->datalen++;
 | 
			
		||||
		if (ctx->datalen == 64) {
 | 
			
		||||
			sha256_transform(ctx, ctx->data);
 | 
			
		||||
			ctx->bitlen += 512;
 | 
			
		||||
			ctx->datalen = 0;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void sha256_final(SHA256_CTX *ctx, BYTE hash[])
 | 
			
		||||
{
 | 
			
		||||
	WORD i;
 | 
			
		||||
 | 
			
		||||
	i = ctx->datalen;
 | 
			
		||||
 | 
			
		||||
	// Pad whatever data is left in the buffer.
 | 
			
		||||
	if (ctx->datalen < 56) {
 | 
			
		||||
		ctx->data[i++] = 0x80;
 | 
			
		||||
		while (i < 56)
 | 
			
		||||
			ctx->data[i++] = 0x00;
 | 
			
		||||
	}
 | 
			
		||||
	else {
 | 
			
		||||
		ctx->data[i++] = 0x80;
 | 
			
		||||
		while (i < 64)
 | 
			
		||||
			ctx->data[i++] = 0x00;
 | 
			
		||||
		sha256_transform(ctx, ctx->data);
 | 
			
		||||
		memset(ctx->data, 0, 56);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Append to the padding the total message's length in bits and transform.
 | 
			
		||||
	ctx->bitlen += ctx->datalen * 8;
 | 
			
		||||
	ctx->data[63] = ctx->bitlen;
 | 
			
		||||
	ctx->data[62] = ctx->bitlen >> 8;
 | 
			
		||||
	ctx->data[61] = ctx->bitlen >> 16;
 | 
			
		||||
	ctx->data[60] = ctx->bitlen >> 24;
 | 
			
		||||
	ctx->data[59] = ctx->bitlen >> 32;
 | 
			
		||||
	ctx->data[58] = ctx->bitlen >> 40;
 | 
			
		||||
	ctx->data[57] = ctx->bitlen >> 48;
 | 
			
		||||
	ctx->data[56] = ctx->bitlen >> 56;
 | 
			
		||||
	sha256_transform(ctx, ctx->data);
 | 
			
		||||
 | 
			
		||||
	// Since this implementation uses little endian byte ordering and SHA uses big endian,
 | 
			
		||||
	// reverse all the bytes when copying the final state to the output hash.
 | 
			
		||||
	for (i = 0; i < 4; ++i) {
 | 
			
		||||
		hash[i]      = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
 | 
			
		||||
		hash[i + 4]  = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
 | 
			
		||||
		hash[i + 8]  = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
 | 
			
		||||
		hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
 | 
			
		||||
		hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
 | 
			
		||||
		hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;
 | 
			
		||||
		hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;
 | 
			
		||||
		hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
		Loading…
	
		Reference in New Issue