v/examples/sokol/05_instancing_glsl/rt_glsl.v

526 lines
15 KiB
V
Raw Normal View History

/**********************************************************************
*
* Sokol 3d cube multishader demo
*
* Copyright (c) 2021 Dario Deledda. All rights reserved.
* Use of this source code is governed by an MIT license
* that can be found in the LICENSE file.
*
* HOW TO COMPILE SHADERS:
* - download the sokol shader convertor tool from https://github.com/floooh/sokol-tools-bin
*
* - compile the .glsl shared file with:
* linux : sokol-shdc --input rt_glsl_instancing.glsl --output rt_glsl_instancing.h --slang glsl330
* windows: sokol-shdc.exe --input rt_glsl_instancing.glsl --output rt_glsl_instancing.h --slang glsl330
*
* --slang parameter can be:
* - glsl330: desktop GL
* - glsl100: GLES2 / WebGL
* - glsl300es: GLES3 / WebGL2
* - hlsl4: D3D11
* - hlsl5: D3D11
* - metal_macos: Metal on macOS
* - metal_ios: Metal on iOS device
* - metal_sim: Metal on iOS simulator
* - wgpu: WebGPU
*
* you can have multiple platforms at the same time passing parameters like this: --slang glsl330:hlsl5:metal_macos
* for further infos have a look at the sokol shader tool docs.
*
* TODO:
* - frame counter
**********************************************************************/
import gg
import gg.m4
import gx
import math
import sokol.gfx
//import sokol.sgl
import time
const (
win_width = 800
win_height = 800
bg_color = gx.white
num_inst = 16384
)
struct App {
mut:
gg &gg.Context
texture C.sg_image
init_flag bool
frame_count int
mouse_x int = -1
mouse_y int = -1
mouse_down bool
// glsl
cube_pip_glsl C.sg_pipeline
cube_bind C.sg_bindings
pipe map[string]C.sg_pipeline
bind map[string]C.sg_bindings
// time
ticks i64
// instances
inst_pos [num_inst]m4.Vec4
// camera
camera_x f32
camera_z f32
}
/******************************************************************************
* GLSL Include and functions
******************************************************************************/
#flag -I @VMODROOT/.
#include "rt_glsl_instancing.h" #Please use sokol-shdc to generate the necessary rt_glsl_march.h file from rt_glsl_march.glsl (see the instructions at the top of this file)
fn C.instancing_shader_desc(gfx.Backend) &C.sg_shader_desc
/******************************************************************************
* Texture functions
******************************************************************************/
fn create_texture(w int, h int, buf byteptr) C.sg_image{
sz := w * h * 4
mut img_desc := C.sg_image_desc{
width: w
height: h
num_mipmaps: 0
min_filter: .linear
mag_filter: .linear
//usage: .dynamic
wrap_u: .clamp_to_edge
wrap_v: .clamp_to_edge
label: &byte(0)
d3d11_texture: 0
}
// comment if .dynamic is enabled
img_desc.data.subimage[0][0] = C.sg_range{
ptr: buf
size: size_t(sz)
}
sg_img := C.sg_make_image(&img_desc)
return sg_img
}
fn destroy_texture(sg_img C.sg_image){
C.sg_destroy_image(sg_img)
}
// Use only if usage: .dynamic is enabled
fn update_text_texture(sg_img C.sg_image, w int, h int, buf byteptr){
sz := w * h * 4
mut tmp_sbc := C.sg_image_data{}
tmp_sbc.subimage[0][0] = C.sg_range{
ptr: buf
size: size_t(sz)
}
C.sg_update_image(sg_img, &tmp_sbc)
}
/******************************************************************************
* Draw functions
******************************************************************************
Cube vertex buffer with packed vertex formats for color and texture coords.
Note that a vertex format which must be portable across all
backends must only use the normalized integer formats
(BYTE4N, UBYTE4N, SHORT2N, SHORT4N), which can be converted
to floating point formats in the vertex shader inputs.
The reason is that D3D11 cannot convert from non-normalized
formats to floating point inputs (only to integer inputs),
and WebGL2 / GLES2 don't support integer vertex shader inputs.
*/
struct Vertex_t {
x f32
y f32
z f32
color u32
//u u16 // for compatibility with D3D11
//v u16 // for compatibility with D3D11
u f32
v f32
}
// march shader init
fn init_cube_glsl_i(mut app App) {
/* cube vertex buffer */
//d := u16(32767) // for compatibility with D3D11, 32767 stand for 1
d := f32(1.0)
c := u32(0xFFFFFF_FF) // color RGBA8
vertices := [
// Face 0
Vertex_t{-1.0, -1.0, -1.0, c, 0, 0},
Vertex_t{ 1.0, -1.0, -1.0, c, d, 0},
Vertex_t{ 1.0, 1.0, -1.0, c, d, d},
Vertex_t{-1.0, 1.0, -1.0, c, 0, d},
// Face 1
Vertex_t{-1.0, -1.0, 1.0, c, 0, 0},
Vertex_t{ 1.0, -1.0, 1.0, c, d, 0},
Vertex_t{ 1.0, 1.0, 1.0, c, d, d},
Vertex_t{-1.0, 1.0, 1.0, c, 0, d},
// Face 2
Vertex_t{-1.0, -1.0, -1.0, c, 0, 0},
Vertex_t{-1.0, 1.0, -1.0, c, d, 0},
Vertex_t{-1.0, 1.0, 1.0, c, d, d},
Vertex_t{-1.0, -1.0, 1.0, c, 0, d},
// Face 3
Vertex_t{ 1.0, -1.0, -1.0, c, 0, 0},
Vertex_t{ 1.0, 1.0, -1.0, c, d, 0},
Vertex_t{ 1.0, 1.0, 1.0, c, d, d},
Vertex_t{ 1.0, -1.0, 1.0, c, 0, d},
// Face 4
Vertex_t{-1.0, -1.0, -1.0, c, 0, 0},
Vertex_t{-1.0, -1.0, 1.0, c, d, 0},
Vertex_t{ 1.0, -1.0, 1.0, c, d, d},
Vertex_t{ 1.0, -1.0, -1.0, c, 0, d},
// Face 5
Vertex_t{-1.0, 1.0, -1.0, c, 0, 0},
Vertex_t{-1.0, 1.0, 1.0, c, d, 0},
Vertex_t{ 1.0, 1.0, 1.0, c, d, d},
Vertex_t{ 1.0, 1.0, -1.0, c, 0, d},
]
mut vert_buffer_desc := C.sg_buffer_desc{}
unsafe {C.memset(&vert_buffer_desc, 0, sizeof(vert_buffer_desc))}
vert_buffer_desc.size = size_t(vertices.len * int(sizeof(Vertex_t)))
vert_buffer_desc.data = C.sg_range{
ptr: vertices.data
size: size_t(vertices.len * int(sizeof(Vertex_t)))
}
vert_buffer_desc.@type = .vertexbuffer
vert_buffer_desc.label = "cube-vertices".str
vbuf := gfx.make_buffer(&vert_buffer_desc)
/* create an instance buffer for the cube */
mut inst_buffer_desc := C.sg_buffer_desc{}
unsafe {C.memset(&inst_buffer_desc, 0, sizeof(inst_buffer_desc))}
inst_buffer_desc.size = size_t(num_inst * int(sizeof(m4.Vec4)))
inst_buffer_desc.@type = .vertexbuffer
inst_buffer_desc.usage = .stream
inst_buffer_desc.label = "instance-data".str
inst_buf := gfx.make_buffer(&inst_buffer_desc)
/* create an index buffer for the cube */
indices := [
u16(0), 1, 2, 0, 2, 3,
6, 5, 4, 7, 6, 4,
8, 9, 10, 8, 10, 11,
14, 13, 12, 15, 14, 12,
16, 17, 18, 16, 18, 19,
22, 21, 20, 23, 22, 20
]
mut index_buffer_desc := C.sg_buffer_desc{}
unsafe {C.memset(&index_buffer_desc, 0, sizeof(index_buffer_desc))}
index_buffer_desc.size = size_t(indices.len * int(sizeof(u16)))
index_buffer_desc.data = C.sg_range{
ptr: indices.data
size: size_t(indices.len * int(sizeof(u16)))
}
index_buffer_desc.@type = .indexbuffer
index_buffer_desc.label = "cube-indices".str
ibuf := gfx.make_buffer(&index_buffer_desc)
/* create shader */
shader := gfx.make_shader(C.instancing_shader_desc(C.sg_query_backend()))
mut pipdesc := C.sg_pipeline_desc{}
unsafe {C.memset(&pipdesc, 0, sizeof(pipdesc))}
pipdesc.layout.buffers[0].stride = int(sizeof(Vertex_t))
// the constants [C.ATTR_vs_m_pos, C.ATTR_vs_m_color0, C.ATTR_vs_m_texcoord0] are generated by sokol-shdc
pipdesc.layout.attrs[C.ATTR_vs_i_pos ].format = .float3 // x,y,z as f32
pipdesc.layout.attrs[C.ATTR_vs_i_pos ].buffer_index = 0
pipdesc.layout.attrs[C.ATTR_vs_i_color0 ].format = .ubyte4n // color as u32
pipdesc.layout.attrs[C.ATTR_vs_i_pos ].buffer_index = 0
pipdesc.layout.attrs[C.ATTR_vs_i_texcoord0].format = .float2 // u,v as f32
pipdesc.layout.attrs[C.ATTR_vs_i_pos ].buffer_index = 0
// instancing
// the constant ATTR_vs_i_inst_pos is generated by sokol-shdc
pipdesc.layout.buffers[1].stride = int(sizeof(m4.Vec4))
pipdesc.layout.buffers[1].step_func = .per_instance // we will pass a single parameter for each instance!!
pipdesc.layout.attrs[C.ATTR_vs_i_inst_pos ].format = .float4
pipdesc.layout.attrs[C.ATTR_vs_i_inst_pos ].buffer_index = 1
pipdesc.shader = shader
pipdesc.index_type = .uint16
pipdesc.depth = C.sg_depth_state{
write_enabled: true
compare: gfx.CompareFunc(C.SG_COMPAREFUNC_LESS_EQUAL)
}
pipdesc.cull_mode = .back
pipdesc.label = "glsl_shader pipeline".str
mut bind := C.sg_bindings{}
unsafe {C.memset(&bind, 0, sizeof(bind))}
bind.vertex_buffers[0] = vbuf // vertex buffer
bind.vertex_buffers[1] = inst_buf // instance buffer
bind.index_buffer = ibuf
bind.fs_images[C.SLOT_tex] = app.texture
app.bind['inst'] = bind
app.pipe['inst'] = gfx.make_pipeline(&pipdesc)
println("GLSL March init DONE!")
}
fn calc_tr_matrices(w f32, h f32, rx f32, ry f32, in_scale f32) m4.Mat4{
proj := m4.perspective(60, w/h, 0.01, 4000.0)
view := m4.look_at(m4.Vec4{e:[f32(0.0),100,6,0]!}, m4.Vec4{e:[f32(0),0,0,0]!}, m4.Vec4{e:[f32(0),1.0,0,0]!})
view_proj := view * proj
rxm := m4.rotate(m4.rad(rx), m4.Vec4{e:[f32(1),0,0,0]!})
rym := m4.rotate(m4.rad(ry), m4.Vec4{e:[f32(0),1,0,0]!})
model := rym * rxm
scale_m := m4.scale(m4.Vec4{e:[in_scale, in_scale, in_scale, 1]!})
res := (scale_m * model)* view_proj
return res
}
// triangles draw
fn draw_cube_glsl_i(mut app App){
if app.init_flag == false {
return
}
ws := gg.window_size_real_pixels()
//ratio := f32(ws.width) / ws.height
dw := f32(ws.width / 2)
dh := f32(ws.height / 2)
rot := [f32(app.mouse_y), f32(app.mouse_x)]
tr_matrix := calc_tr_matrices(dw, dh, rot[0], rot[1], 2.3)
gfx.apply_pipeline(app.pipe['inst'])
gfx.apply_bindings(app.bind['inst'])
//***************
// Instancing
//***************
// passing the instancing to the vs
time_ticks := f32(time.ticks() - app.ticks) / 1000
cube_size := 2
sz := 128 // field size dimension
cx := 64 // x center for the cubes
cz := 64 // z center for the cubes
//frame := (app.frame_count/4) % 100
for index in 0..num_inst {
x := f32(index % sz)
z := f32(index / sz)
// simply waves
y := f32(math.cos((x+time_ticks)/2.0)*math.sin(z/2.0))*2
// sombrero function
//r := ((x-cx)*(x-cx)+(z-cz)*(z-cz))/(sz/2)
//y := f32(math.sin(r+time_ticks)*4.0)
spare_param := f32(index % 10)
app.inst_pos[index] = m4.Vec4{e:[f32((x - cx - app.camera_x) * cube_size),y ,f32( (z - cz - app.camera_z) * cube_size),spare_param]!}
}
range := C.sg_range{
ptr: unsafe { &app.inst_pos }
size: size_t(num_inst * int(sizeof(m4.Vec4)))
}
gfx.update_buffer(app.bind['inst'].vertex_buffers[1], &range )
// Uniforms
// *** vertex shadeer uniforms ***
// passing the view matrix as uniform
// res is a 4x4 matrix of f32 thus: 4*16 byte of size
vs_uniforms_range := C.sg_range{
ptr: unsafe { &tr_matrix }
size: size_t(4 * 16)
}
gfx.apply_uniforms(C.SG_SHADERSTAGE_VS, C.SLOT_vs_params_i, &vs_uniforms_range)
/*
// *** fragment shader uniforms ***
time_ticks := f32(time.ticks() - app.ticks) / 1000
mut tmp_fs_params := [
f32(ws.width), ws.height * ratio, // x,y resolution to pass to FS
0,0, // dont send mouse position
//app.mouse_x, // mouse x
//ws.height - app.mouse_y*2, // mouse y scaled
time_ticks, // time as f32
app.frame_count, // frame count
0,0 // padding bytes , see "fs_params" struct paddings in rt_glsl.h
]!
fs_uniforms_range := C.sg_range{
ptr: unsafe { &tmp_fs_params }
size: size_t(sizeof(tmp_fs_params))
}
gfx.apply_uniforms(C.SG_SHADERSTAGE_FS, C.SLOT_fs_params, &fs_uniforms_range)
*/
// 3 vertices for triangle * 2 triangles per face * 6 faces = 36 vertices to draw for num_inst times
gfx.draw(0, (3 * 2) * 6, num_inst)
}
fn draw_start_glsl(app App){
if app.init_flag == false {
return
}
ws := gg.window_size_real_pixels()
//ratio := f32(ws.width) / ws.height
//dw := f32(ws.width / 2)
//dh := f32(ws.height / 2)
gfx.apply_viewport(0, 0, ws.width, ws.height, true)
}
fn draw_end_glsl(app App){
gfx.end_pass()
gfx.commit()
}
fn frame(mut app App) {
ws := gg.window_size_real_pixels()
// clear
mut color_action := C.sg_color_attachment_action{
action: gfx.Action(C.SG_ACTION_CLEAR)
value: C.sg_color{
r: 0.0
g: 0.0
b: 0.0
a: 1.0
}
}
mut pass_action := C.sg_pass_action{}
pass_action.colors[0] = color_action
gfx.begin_default_pass(&pass_action, ws.width, ws.height)
draw_start_glsl(app)
draw_cube_glsl_i(mut app)
draw_end_glsl(app)
app.frame_count++
}
/******************************************************************************
* Init / Cleanup
******************************************************************************/
fn my_init(mut app App) {
// create chessboard texture 256*256 RGBA
w := 256
h := 256
sz := w * h * 4
tmp_txt := unsafe { malloc(sz) }
mut i := 0
for i < sz {
unsafe {
y := (i >> 0x8) >> 5 // 8 cell
x := (i & 0xFF) >> 5 // 8 cell
// upper left corner
if x == 0 && y == 0 {
tmp_txt[i + 0] = byte(0xFF)
tmp_txt[i + 1] = byte(0)
tmp_txt[i + 2] = byte(0)
tmp_txt[i + 3] = byte(0xFF)
}
// low right corner
else if x == 7 && y == 7 {
tmp_txt[i + 0] = byte(0)
tmp_txt[i + 1] = byte(0xFF)
tmp_txt[i + 2] = byte(0)
tmp_txt[i + 3] = byte(0xFF)
} else {
col := if ((x + y) & 1) == 1 { 0xFF } else { 128 }
tmp_txt[i + 0] = byte(col) // red
tmp_txt[i + 1] = byte(col) // green
tmp_txt[i + 2] = byte(col) // blue
tmp_txt[i + 3] = byte(0xFF) // alpha
}
i += 4
}
}
unsafe {
app.texture = create_texture(w, h, tmp_txt)
free(tmp_txt)
}
// glsl
init_cube_glsl_i(mut app)
app.init_flag = true
}
fn cleanup(mut app App) {
gfx.shutdown()
}
/******************************************************************************
* events handling
******************************************************************************/
fn my_event_manager(mut ev gg.Event, mut app App) {
if ev.typ == .mouse_down{
app.mouse_down = true
}
if ev.typ == .mouse_up{
app.mouse_down = false
}
if app.mouse_down == true && ev.typ == .mouse_move {
app.mouse_x = int(ev.mouse_x)
app.mouse_y = int(ev.mouse_y)
}
if ev.typ == .touches_began || ev.typ == .touches_moved {
if ev.num_touches > 0 {
touch_point := ev.touches[0]
app.mouse_x = int(touch_point.pos_x)
app.mouse_y = int(touch_point.pos_y)
}
}
// keyboard
if ev.typ == .key_down {
step := f32(1.0)
match ev.key_code {
.w { app.camera_z += step }
.s { app.camera_z -= step }
.a { app.camera_x -= step }
.d { app.camera_x += step }
else{}
}
}
}
/******************************************************************************
* Main
******************************************************************************/
[console] // is needed for easier diagnostics on windows
fn main(){
// App init
mut app := &App{
gg: 0
}
app.gg = gg.new_context({
width: win_width
height: win_height
use_ortho: true // This is needed for 2D drawing
create_window: true
window_title: 'Instancing Cube'
user_data: app
bg_color: bg_color
frame_fn: frame
init_fn: my_init
cleanup_fn: cleanup
event_fn: my_event_manager
})
app.ticks = time.ticks()
app.gg.run()
}