112 lines
2.1 KiB
V
112 lines
2.1 KiB
V
|
import math
|
||
|
import rand
|
||
|
import rand.dist
|
||
|
|
||
|
const (
|
||
|
// The sample size to be used
|
||
|
count = 2000
|
||
|
// Accepted error is within 5% of the actual values.
|
||
|
error = 0.05
|
||
|
// The seeds used (for reproducible testing)
|
||
|
seeds = [[u32(0xffff24), 0xabcd], [u32(0x141024), 0x42851],
|
||
|
[u32(0x1452), 0x90cd],
|
||
|
]
|
||
|
)
|
||
|
|
||
|
fn test_bernoulli() {
|
||
|
ps := [0.0, 0.1, 1.0 / 3.0, 0.5, 0.8, 17.0 / 18.0, 1.0]
|
||
|
|
||
|
for seed in seeds {
|
||
|
rand.seed(seed)
|
||
|
for p in ps {
|
||
|
mut successes := 0
|
||
|
for _ in 0 .. count {
|
||
|
if dist.bernoulli(p) {
|
||
|
successes++
|
||
|
}
|
||
|
}
|
||
|
assert math.abs(f64(successes) / count - p) < error
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
fn test_binomial() {
|
||
|
ns := [100, 200, 1000]
|
||
|
ps := [0.0, 0.5, 0.95, 1.0]
|
||
|
|
||
|
for seed in seeds {
|
||
|
rand.seed(seed)
|
||
|
for n in ns {
|
||
|
for p in ps {
|
||
|
np := n * p
|
||
|
npq := np * (1 - p)
|
||
|
|
||
|
mut sum := 0
|
||
|
mut var := 0.0
|
||
|
for _ in 0 .. count {
|
||
|
x := dist.binomial(n, p)
|
||
|
sum += x
|
||
|
dist := (x - np)
|
||
|
var += dist * dist
|
||
|
}
|
||
|
|
||
|
assert math.abs(f64(sum / count) - np) / n < error
|
||
|
assert math.abs(f64(var / count) - npq) / n < error
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
fn test_normal_pair() {
|
||
|
mus := [0, 10, 100, -40]
|
||
|
sigmas := [1, 2, 40, 5]
|
||
|
total := 2 * count
|
||
|
|
||
|
for seed in seeds {
|
||
|
rand.seed(seed)
|
||
|
for mu in mus {
|
||
|
for sigma in sigmas {
|
||
|
mut sum := 0.0
|
||
|
mut var := 0.0
|
||
|
for _ in 0 .. count {
|
||
|
x, y := dist.normal_pair(mu: mu, sigma: sigma)
|
||
|
sum += x + y
|
||
|
dist_x := x - mu
|
||
|
dist_y := y - mu
|
||
|
var += dist_x * dist_x
|
||
|
var += dist_y * dist_y
|
||
|
}
|
||
|
|
||
|
variance := sigma * sigma
|
||
|
assert math.abs(f64(sum / total) - mu) / sigma < 1
|
||
|
assert math.abs(f64(var / total) - variance) / variance < 2 * error
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
fn test_normal() {
|
||
|
mus := [0, 10, 100, -40, 20]
|
||
|
sigmas := [1, 2, 5]
|
||
|
|
||
|
for seed in seeds {
|
||
|
rand.seed(seed)
|
||
|
for mu in mus {
|
||
|
for sigma in sigmas {
|
||
|
mut sum := 0.0
|
||
|
mut var := 0.0
|
||
|
for _ in 0 .. count {
|
||
|
x := dist.normal(mu: mu, sigma: sigma)
|
||
|
sum += x
|
||
|
dist := x - mu
|
||
|
var += dist * dist
|
||
|
}
|
||
|
|
||
|
variance := sigma * sigma
|
||
|
assert math.abs(f64(sum / count) - mu) / sigma < 1
|
||
|
assert math.abs(f64(var / count) - variance) / variance < 2 * error
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|