v/vlib/crypto/ed25519/internal/edwards25519/extra.v

353 lines
10 KiB
V
Raw Normal View History

module edwards25519
// extended_coordinates returns v in extended coordinates (X:Y:Z:T) where
// x = X/Z, y = Y/Z, and xy = T/Z as in https://eprint.iacr.org/2008/522.
fn (mut v Point) extended_coordinates() (Element, Element, Element, Element) {
// This function is outlined to make the allocations inline in the caller
// rather than happen on the heap. Don't change the style without making
// sure it doesn't increase the inliner cost.
mut e := []Element{len: 4}
x, y, z, t := v.extended_coordinates_generic(mut e)
return x, y, z, t
}
fn (mut v Point) extended_coordinates_generic(mut e []Element) (Element, Element, Element, Element) {
check_initialized(v)
x := e[0].set(v.x)
y := e[1].set(v.y)
z := e[2].set(v.z)
t := e[3].set(v.t)
return x, y, z, t
}
// Given k > 0, set s = s**(2*i).
fn (mut s Scalar) pow2k(k int) {
for i := 0; i < k; i++ {
s.multiply(s, s)
}
}
// set_extended_coordinates sets v = (X:Y:Z:T) in extended coordinates where
// x = X/Z, y = Y/Z, and xy = T/Z as in https://eprint.iacr.org/2008/522.
//
// If the coordinates are invalid or don't represent a valid point on the curve,
// set_extended_coordinates returns an error and the receiver is
// unchanged. Otherwise, set_extended_coordinates returns v.
fn (mut v Point) set_extended_coordinates(x Element, y Element, z Element, t Element) ?Point {
if !is_on_curve(x, y, z, t) {
return error('edwards25519: invalid point coordinates')
}
v.x.set(x)
v.y.set(y)
v.z.set(z)
v.t.set(t)
return v
}
fn is_on_curve(x Element, y Element, z Element, t Element) bool {
mut lhs := Element{}
mut rhs := Element{}
mut xx := Element{}
xx.square(x)
mut yy := Element{}
yy.square(y)
mut zz := Element{}
zz.square(z)
// zz := new(Element).Square(Z)
mut tt := Element{}
tt.square(t)
// tt := new(Element).Square(T)
// -x² + y² = 1 + dx²y²
// -(X/Z)² + (Y/Z)² = 1 + d(T/Z)²
// -X² + Y² = Z² + dT²
lhs.subtract(yy, xx)
mut d := d_const
rhs.multiply(d, tt)
rhs.add(rhs, zz)
if lhs.equal(rhs) != 1 {
return false
}
// xy = T/Z
// XY/Z² = T/Z
// XY = TZ
lhs.multiply(x, y)
rhs.multiply(t, z)
return lhs.equal(rhs) == 1
}
// bytes_montgomery converts v to a point on the birationally-equivalent
// Curve25519 Montgomery curve, and returns its canonical 32 bytes encoding
// according to RFC 7748.
//
// Note that bytes_montgomery only encodes the u-coordinate, so v and -v encode
// to the same value. If v is the identity point, bytes_montgomery returns 32
// zero bytes, analogously to the X25519 function.
2022-04-15 14:35:35 +02:00
pub fn (mut v Point) bytes_montgomery() []u8 {
// This function is outlined to make the allocations inline in the caller
// rather than happen on the heap.
mut buf := [32]byte{}
return v.bytes_montgomery_generic(mut buf)
}
2022-04-15 14:35:35 +02:00
fn (mut v Point) bytes_montgomery_generic(mut buf [32]byte) []u8 {
check_initialized(v)
// RFC 7748, Section 4.1 provides the bilinear map to calculate the
// Montgomery u-coordinate
//
// u = (1 + y) / (1 - y)
//
// where y = Y / Z.
mut y := Element{}
mut recip := Element{}
mut u := Element{}
y.multiply(v.y, y.invert(v.z)) // y = Y / Z
recip.invert(recip.subtract(fe_one, &y)) // r = 1/(1 - y)
u.multiply(u.add(fe_one, y), recip) // u = (1 + y)*r
return copy_field_element(mut buf, mut u)
}
// mult_by_cofactor sets v = 8 * p, and returns v.
pub fn (mut v Point) mult_by_cofactor(p Point) Point {
check_initialized(p)
mut result := ProjectiveP1{}
mut pp := ProjectiveP2{}
pp.from_p3(p)
result.double(pp)
pp.from_p1(result)
result.double(pp)
pp.from_p1(result)
result.double(pp)
return v.from_p1(result)
}
// invert sets s to the inverse of a nonzero scalar v, and returns s.
//
// If t is zero, invert returns zero.
pub fn (mut s Scalar) invert(t Scalar) Scalar {
// Uses a hardcoded sliding window of width 4.
mut table := [8]Scalar{}
mut tt := Scalar{}
tt.multiply(t, t)
table[0] = t
for i := 0; i < 7; i++ {
table[i + 1].multiply(table[i], tt)
}
// Now table = [t**1, t**3, t**7, t**11, t**13, t**15]
// so t**k = t[k/2] for odd k
// To compute the sliding window digits, use the following Sage script:
// sage: import itertools
// sage: def sliding_window(w,k):
// ....: digits = []
// ....: while k > 0:
// ....: if k % 2 == 1:
// ....: kmod = k % (2**w)
// ....: digits.append(kmod)
// ....: k = k - kmod
// ....: else:
// ....: digits.append(0)
// ....: k = k // 2
// ....: return digits
// Now we can compute s roughly as follows:
// sage: s = 1
// sage: for coeff in reversed(sliding_window(4,l-2)):
// ....: s = s*s
// ....: if coeff > 0 :
// ....: s = s*t**coeff
// This works on one bit at a time, with many runs of zeros.
// The digits can be collapsed into [(count, coeff)] as follows:
// sage: [(len(list(group)),d) for d,group in itertools.groupby(sliding_window(4,l-2))]
// Entries of the form (k, 0) turn into pow2k(k)
// Entries of the form (1, coeff) turn into a squaring and then a table lookup.
// We can fold the squaring into the previous pow2k(k) as pow2k(k+1).
s = table[1 / 2]
s.pow2k(127 + 1)
s.multiply(s, table[1 / 2])
s.pow2k(4 + 1)
s.multiply(s, table[9 / 2])
s.pow2k(3 + 1)
s.multiply(s, table[11 / 2])
s.pow2k(3 + 1)
s.multiply(s, table[13 / 2])
s.pow2k(3 + 1)
s.multiply(s, table[15 / 2])
s.pow2k(4 + 1)
s.multiply(s, table[7 / 2])
s.pow2k(4 + 1)
s.multiply(s, table[15 / 2])
s.pow2k(3 + 1)
s.multiply(s, table[5 / 2])
s.pow2k(3 + 1)
s.multiply(s, table[1 / 2])
s.pow2k(4 + 1)
s.multiply(s, table[15 / 2])
s.pow2k(4 + 1)
s.multiply(s, table[15 / 2])
s.pow2k(4 + 1)
s.multiply(s, table[7 / 2])
s.pow2k(3 + 1)
s.multiply(s, table[3 / 2])
s.pow2k(4 + 1)
s.multiply(s, table[11 / 2])
s.pow2k(5 + 1)
s.multiply(s, table[11 / 2])
s.pow2k(9 + 1)
s.multiply(s, table[9 / 2])
s.pow2k(3 + 1)
s.multiply(s, table[3 / 2])
s.pow2k(4 + 1)
s.multiply(s, table[3 / 2])
s.pow2k(4 + 1)
s.multiply(s, table[3 / 2])
s.pow2k(4 + 1)
s.multiply(s, table[9 / 2])
s.pow2k(3 + 1)
s.multiply(s, table[7 / 2])
s.pow2k(3 + 1)
s.multiply(s, table[3 / 2])
s.pow2k(3 + 1)
s.multiply(s, table[13 / 2])
s.pow2k(3 + 1)
s.multiply(s, table[7 / 2])
s.pow2k(4 + 1)
s.multiply(s, table[9 / 2])
s.pow2k(3 + 1)
s.multiply(s, table[15 / 2])
s.pow2k(4 + 1)
s.multiply(s, table[11 / 2])
return s
}
// multi_scalar_mult sets v = sum(scalars[i] * points[i]), and returns v.
//
// Execution time depends only on the lengths of the two slices, which must match.
pub fn (mut v Point) multi_scalar_mult(scalars []Scalar, points []Point) Point {
if scalars.len != points.len {
panic('edwards25519: called multi_scalar_mult with different size inputs')
}
check_initialized(...points)
mut sc := scalars.clone()
// Proceed as in the single-base case, but share doublings
// between each point in the multiscalar equation.
// Build lookup tables for each point
mut tables := []ProjLookupTable{len: points.len}
for i, _ in tables {
tables[i].from_p3(points[i])
}
// Compute signed radix-16 digits for each scalar
// digits := make([][64]int8, len(scalars))
mut digits := [][]i8{len: sc.len, init: []i8{len: 64, cap: 64}}
for j, _ in digits {
digits[j] = sc[j].signed_radix16()
}
// Unwrap first loop iteration to save computing 16*identity
mut multiple := ProjectiveCached{}
mut tmp1 := ProjectiveP1{}
mut tmp2 := ProjectiveP2{}
// Lookup-and-add the appropriate multiple of each input point
for k, _ in tables {
tables[k].select_into(mut multiple, digits[k][63])
tmp1.add(v, multiple) // tmp1 = v + x_(j,63)*Q in P1xP1 coords
v.from_p1(tmp1) // update v
}
tmp2.from_p3(v) // set up tmp2 = v in P2 coords for next iteration
for r := 62; r >= 0; r-- {
tmp1.double(tmp2) // tmp1 = 2*(prev) in P1xP1 coords
tmp2.from_p1(tmp1) // tmp2 = 2*(prev) in P2 coords
tmp1.double(tmp2) // tmp1 = 4*(prev) in P1xP1 coords
tmp2.from_p1(tmp1) // tmp2 = 4*(prev) in P2 coords
tmp1.double(tmp2) // tmp1 = 8*(prev) in P1xP1 coords
tmp2.from_p1(tmp1) // tmp2 = 8*(prev) in P2 coords
tmp1.double(tmp2) // tmp1 = 16*(prev) in P1xP1 coords
v.from_p1(tmp1) // v = 16*(prev) in P3 coords
// Lookup-and-add the appropriate multiple of each input point
for s, _ in tables {
tables[s].select_into(mut multiple, digits[s][r])
tmp1.add(v, multiple) // tmp1 = v + x_(j,i)*Q in P1xP1 coords
v.from_p1(tmp1) // update v
}
tmp2.from_p3(v) // set up tmp2 = v in P2 coords for next iteration
}
return v
}
// vartime_multiscalar_mult sets v = sum(scalars[i] * points[i]), and returns v.
//
// Execution time depends on the inputs.
pub fn (mut v Point) vartime_multiscalar_mult(scalars []Scalar, points []Point) Point {
if scalars.len != points.len {
panic('edwards25519: called VarTimeMultiScalarMult with different size inputs')
}
check_initialized(...points)
// Generalize double-base NAF computation to arbitrary sizes.
// Here all the points are dynamic, so we only use the smaller
// tables.
// Build lookup tables for each point
mut tables := []NafLookupTable5{len: points.len}
for i, _ in tables {
tables[i].from_p3(points[i])
}
mut sc := scalars.clone()
// Compute a NAF for each scalar
// mut nafs := make([][256]int8, len(scalars))
mut nafs := [][]i8{len: sc.len, init: []i8{len: 256, cap: 256}}
for j, _ in nafs {
nafs[j] = sc[j].non_adjacent_form(5)
}
mut multiple := ProjectiveCached{}
mut tmp1 := ProjectiveP1{}
mut tmp2 := ProjectiveP2{}
tmp2.zero()
// Move from high to low bits, doubling the accumulator
// at each iteration and checking whether there is a nonzero
// coefficient to look up a multiple of.
//
// Skip trying to find the first nonzero coefficent, because
// searching might be more work than a few extra doublings.
// k == i, l == j
for k := 255; k >= 0; k-- {
tmp1.double(tmp2)
for l, _ in nafs {
if nafs[l][k] > 0 {
v.from_p1(tmp1)
tables[l].select_into(mut multiple, nafs[l][k])
tmp1.add(v, multiple)
} else if nafs[l][k] < 0 {
v.from_p1(tmp1)
tables[l].select_into(mut multiple, -nafs[l][k])
tmp1.sub(v, multiple)
}
}
tmp2.from_p1(tmp1)
}
v.from_p2(tmp2)
return v
}