2019-06-22 20:20:28 +02:00
|
|
|
// Copyright (c) 2019 Alexander Medvednikov. All rights reserved.
|
|
|
|
// Use of this source code is governed by an MIT license
|
|
|
|
// that can be found in the LICENSE file.
|
|
|
|
|
|
|
|
module math
|
|
|
|
|
|
|
|
const (
|
2019-06-25 08:31:35 +02:00
|
|
|
E = 2.71828182845904523536028747135266249775724709369995957496696763
|
|
|
|
Pi = 3.14159265358979323846264338327950288419716939937510582097494459
|
|
|
|
Phi = 1.61803398874989484820458683436563811772030917980576286213544862
|
2019-06-27 19:16:02 +02:00
|
|
|
Tau = 6.28318530717958647692528676655900576839433879875021164194988918
|
2019-06-25 08:31:35 +02:00
|
|
|
|
|
|
|
Sqrt2 = 1.41421356237309504880168872420969807856967187537694807317667974
|
|
|
|
SqrtE = 1.64872127070012814684865078781416357165377610071014801157507931
|
|
|
|
SqrtPi = 1.77245385090551602729816748334114518279754945612238712821380779
|
|
|
|
SqrtPhi = 1.27201964951406896425242246173749149171560804184009624861664038
|
|
|
|
|
|
|
|
Ln2 = 0.693147180559945309417232121458176568075500134360255254120680009
|
|
|
|
Log2E = 1.0 / Ln2
|
|
|
|
Ln10 = 2.30258509299404568401799145468436420760110148862877297603332790
|
|
|
|
Log10E = 1.0 / Ln10
|
2019-06-22 20:20:28 +02:00
|
|
|
)
|
|
|
|
|
2019-06-30 15:33:37 +02:00
|
|
|
// Returns the absolute value.
|
2019-06-26 17:49:50 +02:00
|
|
|
pub fn abs(a f64) f64 {
|
2019-06-22 20:20:28 +02:00
|
|
|
if a < 0 {
|
|
|
|
return -a
|
|
|
|
}
|
|
|
|
return a
|
|
|
|
}
|
|
|
|
|
2019-06-30 15:33:37 +02:00
|
|
|
// Inverse cosine.
|
2019-06-26 17:49:50 +02:00
|
|
|
pub fn acos(a f64) f64 {
|
2019-06-24 16:05:30 +02:00
|
|
|
return C.acos(a)
|
|
|
|
}
|
|
|
|
|
2019-06-30 15:33:37 +02:00
|
|
|
// Inverse sine.
|
2019-06-26 17:49:50 +02:00
|
|
|
pub fn asin(a f64) f64 {
|
2019-06-24 16:05:30 +02:00
|
|
|
return C.asin(a)
|
|
|
|
}
|
|
|
|
|
2019-06-30 15:33:37 +02:00
|
|
|
// Inverse tangent
|
2019-06-26 17:49:50 +02:00
|
|
|
pub fn atan(a f64) f64 {
|
2019-06-24 16:05:30 +02:00
|
|
|
return C.atan(a)
|
|
|
|
}
|
|
|
|
|
2019-06-30 15:33:37 +02:00
|
|
|
// Inverse tangent with two arguments, returns angle between the X axis and the point.
|
2019-06-26 17:49:50 +02:00
|
|
|
pub fn atan2(a, b f64) f64 {
|
2019-06-24 16:05:30 +02:00
|
|
|
return C.atan2(a, b)
|
|
|
|
}
|
|
|
|
|
2019-06-30 15:33:37 +02:00
|
|
|
// Cubic root.
|
|
|
|
pub fn cbrt(a f64) f64 {
|
|
|
|
return C.cbrt(a)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Returns the nearest integer equal or higher to the provided value.
|
2019-06-26 17:49:50 +02:00
|
|
|
pub fn ceil(a f64) f64 {
|
2019-06-23 08:19:37 +02:00
|
|
|
return C.ceil(a)
|
|
|
|
}
|
|
|
|
|
2019-06-30 15:33:37 +02:00
|
|
|
// Cosine.
|
2019-06-26 17:49:50 +02:00
|
|
|
pub fn cos(a f64) f64 {
|
2019-06-22 20:20:28 +02:00
|
|
|
return C.cos(a)
|
|
|
|
}
|
|
|
|
|
2019-06-30 15:33:37 +02:00
|
|
|
// Hyperbolic cosine.
|
2019-06-26 17:49:50 +02:00
|
|
|
pub fn cosh(a f64) f64 {
|
2019-06-23 08:19:37 +02:00
|
|
|
return C.cosh(a)
|
|
|
|
}
|
|
|
|
|
2019-06-30 15:33:37 +02:00
|
|
|
// Returns euler number (e) raised to the provided power.
|
2019-06-26 17:49:50 +02:00
|
|
|
pub fn exp(a f64) f64 {
|
2019-06-23 08:19:37 +02:00
|
|
|
return C.exp(a)
|
|
|
|
}
|
|
|
|
|
2019-06-30 15:33:37 +02:00
|
|
|
// Returns the base-2 exponential function of x.
|
|
|
|
pub fn exp2(a f64) f64 {
|
|
|
|
return C.exp2(a)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Returns the nearest integer equal or lower of the provided value.
|
2019-06-26 17:49:50 +02:00
|
|
|
pub fn floor(a f64) f64 {
|
2019-06-23 08:19:37 +02:00
|
|
|
return C.floor(a)
|
|
|
|
}
|
|
|
|
|
2019-06-30 15:33:37 +02:00
|
|
|
// Returns the floating-point remainder of number / denom (rounded towards zero):
|
2019-06-26 17:49:50 +02:00
|
|
|
pub fn fmod(a, b f64) f64 {
|
2019-06-24 13:08:38 +02:00
|
|
|
return C.fmod(a, b)
|
2019-06-24 10:50:45 +02:00
|
|
|
}
|
|
|
|
|
2019-06-29 17:24:55 +02:00
|
|
|
// gcd calculates greatest common (positive) divisor (or zero if x and y are both zero).
|
|
|
|
pub fn gcd(a, b int) int {
|
|
|
|
if a < 0 {
|
|
|
|
a = -a
|
|
|
|
}
|
|
|
|
if b < 0 {
|
|
|
|
b = -b
|
|
|
|
}
|
|
|
|
for b != 0 {
|
|
|
|
a %= b
|
|
|
|
if a == 0 {
|
|
|
|
return b
|
|
|
|
}
|
|
|
|
b %= a
|
|
|
|
}
|
|
|
|
return a
|
|
|
|
}
|
|
|
|
|
|
|
|
// lcm calculates least common (non-negative) multiple.
|
|
|
|
pub fn lcm(a, b int) int {
|
|
|
|
if a == 0 {
|
|
|
|
return a
|
|
|
|
}
|
|
|
|
res := a * (b / gcd(b, a))
|
|
|
|
if res < 0 {
|
|
|
|
return -res
|
|
|
|
}
|
|
|
|
return res
|
|
|
|
}
|
|
|
|
|
2019-06-30 15:33:37 +02:00
|
|
|
// Returns natural (base e) logarithm of the provided value.
|
2019-06-26 17:49:50 +02:00
|
|
|
pub fn log(a f64) f64 {
|
2019-06-23 08:19:37 +02:00
|
|
|
return C.log(a)
|
|
|
|
}
|
|
|
|
|
2019-06-30 15:33:37 +02:00
|
|
|
// Returns base 2 logarithm of the provided value.
|
|
|
|
pub fn log2(a f64) f64 {
|
|
|
|
return C.log(a) / C.log(2)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Returns the common (base-10) logarithm of x.
|
2019-06-26 17:49:50 +02:00
|
|
|
pub fn log10(a f64) f64 {
|
2019-06-23 08:19:37 +02:00
|
|
|
return C.log10(a)
|
|
|
|
}
|
|
|
|
|
2019-06-30 15:33:37 +02:00
|
|
|
// Returns base N logarithm of the provided value.
|
|
|
|
pub fn log_n(a, b f64) f64 {
|
|
|
|
return C.log(a) / C.log(b)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Returns the maximum value of the two provided.
|
2019-06-26 17:49:50 +02:00
|
|
|
pub fn max(a, b f64) f64 {
|
2019-06-22 20:20:28 +02:00
|
|
|
if a > b {
|
|
|
|
return a
|
|
|
|
}
|
|
|
|
return b
|
|
|
|
}
|
|
|
|
|
2019-06-30 15:33:37 +02:00
|
|
|
// Returns the minimum value of all the values provided.
|
2019-06-26 17:49:50 +02:00
|
|
|
pub fn min(a, b f64) f64 {
|
2019-06-22 20:20:28 +02:00
|
|
|
if a < b {
|
|
|
|
return a
|
|
|
|
}
|
|
|
|
return b
|
|
|
|
}
|
|
|
|
|
2019-06-30 15:33:37 +02:00
|
|
|
// Returns base raised to the provided power.
|
2019-06-26 17:49:50 +02:00
|
|
|
pub fn pow(a, b f64) f64 {
|
2019-06-22 20:20:28 +02:00
|
|
|
return C.pow(a, b)
|
|
|
|
}
|
|
|
|
|
2019-06-30 15:33:37 +02:00
|
|
|
// Radians conversion.
|
2019-06-26 17:49:50 +02:00
|
|
|
pub fn radians(degrees f64) f64 {
|
2019-06-25 08:37:23 +02:00
|
|
|
return degrees * (Pi / 180.0)
|
2019-06-22 20:20:28 +02:00
|
|
|
}
|
|
|
|
|
2019-06-30 15:33:37 +02:00
|
|
|
// Degrees conversion.
|
2019-06-26 17:49:50 +02:00
|
|
|
pub fn degrees(radians f64) f64 {
|
2019-06-25 08:37:23 +02:00
|
|
|
return radians * (180.0 / Pi)
|
2019-06-23 10:44:36 +02:00
|
|
|
}
|
|
|
|
|
2019-06-30 15:33:37 +02:00
|
|
|
// Returns the integer nearest to the provided value.
|
2019-06-26 17:49:50 +02:00
|
|
|
pub fn round(f f64) f64 {
|
2019-06-22 20:20:28 +02:00
|
|
|
return C.round(f)
|
|
|
|
}
|
|
|
|
|
2019-06-30 15:33:37 +02:00
|
|
|
// Sine.
|
2019-06-26 17:49:50 +02:00
|
|
|
pub fn sin(a f64) f64 {
|
2019-06-22 20:20:28 +02:00
|
|
|
return C.sin(a)
|
|
|
|
}
|
|
|
|
|
2019-06-30 15:33:37 +02:00
|
|
|
// Hyperbolic sine.
|
2019-06-26 17:49:50 +02:00
|
|
|
pub fn sinh(a f64) f64 {
|
2019-06-23 08:19:37 +02:00
|
|
|
return C.sinh(a)
|
|
|
|
}
|
|
|
|
|
2019-06-30 15:33:37 +02:00
|
|
|
// Returns square of the provided value.
|
2019-06-26 17:49:50 +02:00
|
|
|
pub fn sqrt(a f64) f64 {
|
2019-06-22 20:20:28 +02:00
|
|
|
return C.sqrt(a)
|
|
|
|
}
|
2019-06-30 15:33:37 +02:00
|
|
|
// Tangent.
|
2019-06-26 17:49:50 +02:00
|
|
|
pub fn tan(a f64) f64 {
|
2019-06-23 08:19:37 +02:00
|
|
|
return C.tan(a)
|
|
|
|
}
|
|
|
|
|
2019-06-30 15:33:37 +02:00
|
|
|
// Hyperbolic tangent.
|
2019-06-26 17:49:50 +02:00
|
|
|
pub fn tanh(a f64) f64 {
|
2019-06-23 08:19:37 +02:00
|
|
|
return C.tanh(a)
|
|
|
|
}
|
|
|
|
|
2019-06-30 15:33:37 +02:00
|
|
|
// Rounds a toward zero, returning the nearest integral value that is not
|
|
|
|
// larger in magnitude than a.
|
2019-06-26 17:49:50 +02:00
|
|
|
pub fn trunc(a f64) f64 {
|
2019-06-23 08:19:37 +02:00
|
|
|
return C.trunc(a)
|
|
|
|
}
|
2019-06-27 19:16:02 +02:00
|
|
|
|
2019-06-30 15:33:37 +02:00
|
|
|
// Return the factorial of the value provided.
|
2019-06-27 19:16:02 +02:00
|
|
|
pub fn factorial(a int) i64 {
|
|
|
|
mut prod := 1
|
|
|
|
for i:= 0; i < a; i++ {
|
|
|
|
prod = prod * (i+1)
|
|
|
|
}
|
|
|
|
return prod
|
|
|
|
}
|
|
|
|
|