v/vlib/crypto/ed25519/internal/edwards25519/extra_test.v

205 lines
5.2 KiB
V
Raw Normal View History

module edwards25519
import os
import rand
import encoding.hex
const github_job = os.getenv('GITHUB_JOB')
fn testsuite_begin() {
if edwards25519.github_job != '' {
// ensure that the CI does not run flaky tests:
rand.seed([u32(0xffff24), 0xabcd])
}
}
// test_bytes_montgomery tests the set_bytes_with_clamping+bytes_montgomery path
// equivalence to curve25519.X25519 for basepoint scalar multiplications.
//
// Note that you can't actually implement X25519 with this package because
// there is no SetBytesMontgomery, and it would not be possible to implement
// it properly: points on the twist would get rejected, and the Scalar returned
// by set_bytes_with_clamping does not preserve its cofactor-clearing properties.
//
// Disabled curve25519 not available yet, but maybe can use own curve25519
/*
fn fn_mon(scalar [32]byte) bool {
mut s := new_scalar().set_bytes_with_clamping(scalar[..])
p := (&Point{}).scalar_base_mult(s)
got := p.bytes_montgomery()
want, _ := curve25519.X25519(scalar[..], curve25519.Basepoint)
return bytes.equal(got, want)
}
fn test_bytes_montgomery() {
/* f := fn(scalar [32]byte) bool {
s := new_scalar().set_bytes_with_clamping(scalar[..])
p := (&Point{}).scalar_base_mult(s)
got := p.bytes_montgomery()
want, _ := curve25519.X25519(scalar[..], curve25519.Basepoint)
return bytes.equal(got, want)
} */
if err := quick.Check(f, nil); err != nil {
t.Error(err)
}
}*/
fn test_bytes_montgomery_sodium() ? {
// Generated with libsodium.js 1.0.18
// crypto_sign_keypair().pubkey
pubkey := '3bf918ffc2c955dc895bf145f566fb96623c1cadbe040091175764b5fde322c0'
mut p := Point{}
p.set_bytes(hex.decode(pubkey) ?) ?
// crypto_sign_ed25519_pk_to_curve25519(pubkey)
want := 'efc6c9d0738e9ea18d738ad4a2653631558931b0f1fde4dd58c436d19686dc28'
got := hex.encode(p.bytes_montgomery())
assert got == want
}
fn test_bytes_montgomery_infinity() {
mut p := new_identity_point()
want := '0000000000000000000000000000000000000000000000000000000000000000'
got := hex.encode(p.bytes_montgomery())
assert got == want
}
const (
loworder_string = '26e8958fc2b227b045c3f489f2ef98f0d5dfac05d3c63339b13802886d53fc85'
loworder_bytes = hex.decode(loworder_string) or { panic(err.msg) }
)
fn fn_cofactor(mut data []byte) bool {
if data.len != 64 {
panic('err.msg')
}
mut loworder := Point{}
loworder.set_bytes(edwards25519.loworder_bytes) or { panic(err.msg) }
mut s := new_scalar()
mut p := Point{}
mut p8 := Point{}
s.set_uniform_bytes(data) or { panic(err.msg) }
p.scalar_base_mult(mut s)
p8.mult_by_cofactor(p)
assert check_on_curve(p8) == true
// 8 * p == (8 * s) * B
mut sc := Scalar{
s: [32]byte{}
}
sc.s[0] = byte(0x08)
s.multiply(s, sc)
mut pp := Point{}
pp.scalar_base_mult(mut s)
if p8.equal(pp) != 1 {
return false
}
// 8 * p == 8 * (loworder + p)
pp.add(p, loworder)
pp.mult_by_cofactor(pp)
if p8.equal(pp) != 1 {
return false
}
// 8 * p == p + p + p + p + p + p + p + p
pp.set(new_identity_point())
for i := 0; i < 8; i++ {
pp.add(pp, p)
}
return p8.equal(pp) == 1
}
fn test_mult_by_cofactor() ? {
mut loworder := Point{}
mut data := rand.bytes(64) ?
assert fn_cofactor(mut data) == true
}
fn invert_works(mut xinv Scalar, x NotZeroScalar) bool {
xinv.invert(x)
mut check := Scalar{}
check.multiply(x, xinv)
return check == sc_one && is_reduced(xinv)
}
fn test_scalar_invert() {
nsc := generate_notzero_scalar(5) or { panic(err.msg) }
mut xsc := generate_scalar(5) or { panic(err.msg) }
assert invert_works(mut xsc, nsc) == true
mut zero := new_scalar()
mut xx := new_scalar()
xx.invert(zero)
assert xx.equal(zero) == 1
}
fn test_multiscalarmultmatchesbasemult() {
for i in 0 .. 6 {
x := generate_scalar(100) or { panic(err.msg) }
y := generate_scalar(5) or { panic(err.msg) }
z := generate_scalar(2) or { panic(err.msg) }
assert multiscalarmultmatchesbasemult(x, y, z) == true
}
}
fn multiscalarmultmatchesbasemult(xx Scalar, yy Scalar, zz Scalar) bool {
mut x := xx
mut y := yy
mut z := zz
mut p := Point{}
mut q1 := Point{}
mut q2 := Point{}
mut q3 := Point{}
mut check := Point{}
mut b := new_generator_point()
p.multi_scalar_mult([x, y, z], [b, b, b])
q1.scalar_base_mult(mut x)
q2.scalar_base_mult(mut y)
q3.scalar_base_mult(mut z)
check.add(q1, q2)
check.add(check, q3)
check_on_curve(p, check, q1, q2, q3)
return p.equal(check) == 1
}
fn vartime_multiscala_rmultmatches_basemult(xx Scalar, yy Scalar, zz Scalar) bool {
mut x := xx
mut y := yy
mut z := zz
mut p := Point{}
mut q1 := Point{}
mut q2 := Point{}
mut q3 := Point{}
mut check := Point{}
mut b := new_generator_point()
p.vartime_multiscalar_mult([x, y, z], [b, b, b])
q1.scalar_base_mult(mut x)
q2.scalar_base_mult(mut y)
q3.scalar_base_mult(mut z)
check.add(q1, q2)
check.add(check, q3)
check_on_curve(p, check, q1, q2, q3)
return p.equal(check) == 1
}
fn test_vartimemultiscalarmultmatchesbasemult() {
for i in 0 .. 5 {
x := generate_scalar(100) or { panic(err.msg) }
y := generate_scalar(5) or { panic(err.msg) }
z := generate_scalar(2) or { panic(err.msg) }
assert vartime_multiscala_rmultmatches_basemult(x, y, z) == true
}
}