v/vlib/math/factorial/factorial.v

81 lines
1.9 KiB
V
Raw Normal View History

2020-02-03 05:00:36 +01:00
// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
2019-12-27 04:08:17 +01:00
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
// Module created by Ulises Jeremias Cornejo Fandos based on
// the definitions provided in https://scientificc.github.io/cmathl/
module factorial
import math
// factorial calculates the factorial of the provided value.
pub fn factorial(n f64) f64 {
// For a large postive argument (n >= FACTORIALS.len) return max_f64
2020-04-09 04:21:11 +02:00
if n >= factorials_table.len {
2019-12-27 04:08:17 +01:00
return math.max_f64
}
// Otherwise return n!.
if n == f64(i64(n)) && n >= 0.0 {
2020-04-09 04:21:11 +02:00
return factorials_table[i64(n)]
2019-12-27 04:08:17 +01:00
}
return math.gamma(n + 1.0)
}
// log_factorial calculates the log-factorial of the provided value.
pub fn log_factorial(n f64) f64 {
// For a large postive argument (n < 0) return max_f64
if n < 0 {
return -math.max_f64
}
// If n < N then return ln(n!).
if n != f64(i64(n)) {
return math.log_gamma(n+1)
2020-04-09 04:21:11 +02:00
} else if n < log_factorials_table.len {
return log_factorials_table[i64(n)]
2019-12-27 04:08:17 +01:00
}
// Otherwise return asymptotic expansion of ln(n!).
return log_factorial_asymptotic_expansion(int(n))
}
fn log_factorial_asymptotic_expansion(n int) f64 {
m := 6
2020-04-26 13:49:31 +02:00
mut term := []f64{}
2019-12-27 04:08:17 +01:00
xx := f64((n + 1) * (n + 1))
mut xj := f64(n + 1)
2020-04-09 04:21:11 +02:00
2019-12-27 04:08:17 +01:00
log_factorial := log_sqrt_2pi - xj + (xj - 0.5) * math.log(xj)
2020-04-09 04:21:11 +02:00
2019-12-27 04:08:17 +01:00
mut i := 0
for i = 0; i < m; i++ {
2020-05-22 17:36:09 +02:00
term << b_numbers[i] / xj
2019-12-27 04:08:17 +01:00
xj *= xx
}
mut sum := term[m-1]
for i = m - 2; i >= 0; i-- {
if math.abs(sum) <= math.abs(term[i]) {
break
}
sum = term[i]
}
for i >= 0 {
sum += term[i]
i--
}
return log_factorial + sum
}