v/vlib/rand/mt19937/mt19937.v

139 lines
4.9 KiB
V
Raw Normal View History

2022-01-04 10:21:08 +01:00
// Copyright (c) 2019-2022 Alexander Medvednikov. All rights reserved.
2020-06-01 21:13:56 +02:00
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
2020-06-09 15:06:07 +02:00
module mt19937
2020-06-01 21:13:56 +02:00
/*
C++ functions for MT19937, with initialization improved 2002/2/10.
Coded by Takuji Nishimura and Makoto Matsumoto.
This is a faster version by taking Shawn Cokus's optimization,
Matthe Bellew's simplification, Isaku Wada's real version.
Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
2020-09-09 14:14:44 +02:00
All rights reserved.
2020-06-01 21:13:56 +02:00
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
2020-09-09 14:14:44 +02:00
3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
2020-06-01 21:13:56 +02:00
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
2020-06-01 21:13:56 +02:00
*/
const (
nn = 312
mm = 156
matrix_a = 0xB5026F5AA96619E9
um = 0xFFFFFFFF80000000
lm = 0x7FFFFFFF
inv_f64_limit = 1.0 / 9007199254740992.0
)
// MT19937RNG is generator that uses the Mersenne Twister algorithm with period 2^19937.
// **NOTE**: The RNG is not seeded when instantiated so remember to seed it before use.
2020-06-01 21:13:56 +02:00
pub struct MT19937RNG {
mut:
state []u64 = []u64{len: mt19937.nn}
mti int = mt19937.nn
2020-09-09 14:14:44 +02:00
next_rnd u32
has_next bool
2020-06-01 21:13:56 +02:00
}
// calculate_state returns a random state array calculated from the `seed_data`.
2020-06-01 21:13:56 +02:00
fn calculate_state(seed_data []u32, mut state []u64) []u64 {
lo := u64(seed_data[0])
hi := u64(seed_data[1])
state[0] = u64((hi << 32) | lo)
for j := 1; j < mt19937.nn; j++ {
2020-06-01 21:13:56 +02:00
state[j] = u64(6364136223846793005) * (state[j - 1] ^ (state[j - 1] >> 62)) + u64(j)
}
return *state
2020-06-01 21:13:56 +02:00
}
// seed sets the current random state based on `seed_data`.
// seed expects `seed_data` to be only two `u32`s in little-endian format as [lower, higher].
2020-06-01 21:13:56 +02:00
pub fn (mut rng MT19937RNG) seed(seed_data []u32) {
if seed_data.len != 2 {
eprintln('mt19937 needs only two 32bit integers as seed: [lower, higher]')
exit(1)
}
// calculate 2 times because MT19937RNG init didn't call calculate_state.
rng.state = calculate_state(seed_data, mut rng.state)
2020-06-01 21:13:56 +02:00
rng.state = calculate_state(seed_data, mut rng.state)
rng.mti = mt19937.nn
2020-06-01 21:13:56 +02:00
rng.next_rnd = 0
rng.has_next = false
}
// u32 returns a pseudorandom 32bit int in range `[0, 2³²)`.
2020-06-01 21:13:56 +02:00
[inline]
pub fn (mut rng MT19937RNG) u32() u32 {
if rng.has_next {
rng.has_next = false
return rng.next_rnd
}
ans := rng.u64()
rng.next_rnd = u32(ans >> 32)
rng.has_next = true
return u32(ans & 0xffffffff)
}
// u64 returns a pseudorandom 64bit int in range `[0, 2⁶⁴)`.
2020-06-01 21:13:56 +02:00
[inline]
pub fn (mut rng MT19937RNG) u64() u64 {
mag01 := [u64(0), u64(mt19937.matrix_a)]
2020-06-01 21:13:56 +02:00
mut x := u64(0)
mut i := int(0)
if rng.mti >= mt19937.nn {
for i = 0; i < mt19937.nn - mt19937.mm; i++ {
x = (rng.state[i] & mt19937.um) | (rng.state[i + 1] & mt19937.lm)
rng.state[i] = rng.state[i + mt19937.mm] ^ (x >> 1) ^ mag01[int(x & 1)]
2020-06-01 21:13:56 +02:00
}
for i < mt19937.nn - 1 {
x = (rng.state[i] & mt19937.um) | (rng.state[i + 1] & mt19937.lm)
rng.state[i] = rng.state[i + (mt19937.mm - mt19937.nn)] ^ (x >> 1) ^ mag01[int(x & 1)]
2020-06-01 21:13:56 +02:00
i++
}
x = (rng.state[mt19937.nn - 1] & mt19937.um) | (rng.state[0] & mt19937.lm)
rng.state[mt19937.nn - 1] = rng.state[mt19937.mm - 1] ^ (x >> 1) ^ mag01[int(x & 1)]
2020-06-01 21:13:56 +02:00
rng.mti = 0
}
x = rng.state[rng.mti]
rng.mti++
x ^= (x >> 29) & 0x5555555555555555
x ^= (x << 17) & 0x71D67FFFEDA60000
x ^= (x << 37) & 0xFFF7EEE000000000
x ^= (x >> 43)
return x
}
2021-09-23 10:14:20 +02:00
// free should be called when the generator is no longer needed
[unsafe]
pub fn (mut rng MT19937RNG) free() {
unsafe { free(rng) }
}