complex, fraction: simplify and format source code

pull/1078/head
hazohelet 2019-07-10 20:51:48 +09:00 committed by Alexander Medvednikov
parent 9907f07602
commit 00ea112b66
2 changed files with 48 additions and 50 deletions

View File

@ -9,8 +9,8 @@ struct Complex {
im f64 im f64
} }
pub fn complex(re f64,im f64) Complex { pub fn complex(re f64, im f64) Complex {
return Complex{re,im} return Complex{re, im}
} }
// To String method // To String method
@ -26,10 +26,15 @@ pub fn (c Complex) str() string {
return out return out
} }
// Complex Absolute value // Complex Modulus value
// mod() and abs() return the same
pub fn (c Complex) abs() f64 { pub fn (c Complex) abs() f64 {
return C.hypot(c.re,c.im) return C.hypot(c.re, c.im)
} }
pub fn (c Complex) mod() f64 {
return c.abs()
}
// Complex Angle // Complex Angle
pub fn (c Complex) angle() f64 { pub fn (c Complex) angle() f64 {
@ -38,12 +43,12 @@ pub fn (c Complex) angle() f64 {
// Complex Addition c1 + c2 // Complex Addition c1 + c2
pub fn (c1 Complex) + (c2 Complex) Complex { pub fn (c1 Complex) + (c2 Complex) Complex {
return Complex{c1.re+c2.re,c1.im+c2.im} return Complex{c1.re + c2.re, c1.im + c2.im}
} }
// Complex Substraction c1 - c2 // Complex Substraction c1 - c2
pub fn (c1 Complex) - (c2 Complex) Complex { pub fn (c1 Complex) - (c2 Complex) Complex {
return Complex{c1.re-c2.re,c1.im-c2.im} return Complex{c1.re - c2.re, c1.im - c2.im}
} }
// Complex Multiplication c1 * c2 // Complex Multiplication c1 * c2
@ -87,76 +92,69 @@ pub fn (c1 Complex) multiply(c2 Complex) Complex {
pub fn (c1 Complex) divide(c2 Complex) Complex { pub fn (c1 Complex) divide(c2 Complex) Complex {
denom := (c2.re * c2.re) + (c2.im * c2.im) denom := (c2.re * c2.re) + (c2.im * c2.im)
return Complex { return Complex {
((c1.re * c2.re) + ((c1.im * -c2.im) * -1))/denom, ((c1.re * c2.re) + ((c1.im * -c2.im) * -1)) / denom,
((c1.re * -c2.im) + (c1.im * c2.re))/denom ((c1.re * -c2.im) + (c1.im * c2.re)) / denom
} }
} }
// Complex Conjugate // Complex Conjugate
pub fn (c1 Complex) conjugate() Complex{ pub fn (c Complex) conjugate() Complex{
return Complex{c1.re,-c1.im} return Complex{c.re, -c.im}
} }
// Complex Additive Inverse // Complex Additive Inverse
// Based on // Based on
// http://tutorial.math.lamar.edu/Extras/ComplexPrimer/Arithmetic.aspx // http://tutorial.math.lamar.edu/Extras/ComplexPrimer/Arithmetic.aspx
pub fn (c1 Complex) addinv() Complex { pub fn (c Complex) addinv() Complex {
return Complex{-c1.re,-c1.im} return Complex{-c.re, -c.im}
} }
// Complex Multiplicative Inverse // Complex Multiplicative Inverse
// Based on // Based on
// http://tutorial.math.lamar.edu/Extras/ComplexPrimer/Arithmetic.aspx // http://tutorial.math.lamar.edu/Extras/ComplexPrimer/Arithmetic.aspx
pub fn (c1 Complex) mulinv() Complex { pub fn (c Complex) mulinv() Complex {
return Complex { return Complex {
c1.re / (pow(c1.re,2) + pow(c1.im,2)), c.re / (c.re * c.re + c.im * c.im),
-c1.im / (pow(c1.re,2) + pow(c1.im,2)) -c.im / (c.re * c.re + c.im * c.im)
} }
} }
// Complex Mod or Absolute
// Based on
// http://tutorial.math.lamar.edu/Extras/ComplexPrimer/ConjugateModulus.aspx
pub fn (c1 Complex) mod() f64 {
return sqrt(pow(c1.re,2)+pow(c1.im,2))
}
// Complex Power // Complex Power
// Based on // Based on
// https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers/multiplying-and-dividing-complex-numbers-in-polar-form/a/complex-number-polar-form-review // https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers/multiplying-and-dividing-complex-numbers-in-polar-form/a/complex-number-polar-form-review
pub fn (c1 Complex) pow(n f64) Complex { pub fn (c Complex) pow(n f64) Complex {
r := pow(c1.mod(),n) r := pow(c.abs(), n)
angle := atan2(c1.im,c1.re) angle := c.angle()
return Complex { return Complex {
r * cos(n*angle), r * cos(n * angle),
r * sin(n*angle) r * sin(n * angle)
} }
} }
// Complex nth root // Complex nth root
pub fn (c1 Complex) root(n f64) Complex { pub fn (c Complex) root(n f64) Complex {
return c1.pow(1.0/n) return c.pow(1.0 / n)
} }
// Complex Exponential // Complex Exponential
// Using Euler's Identity // Using Euler's Identity
// Based on // Based on
// https://www.math.wisc.edu/~angenent/Free-Lecture-Notes/freecomplexnumbers.pdf // https://www.math.wisc.edu/~angenent/Free-Lecture-Notes/freecomplexnumbers.pdf
pub fn (c1 Complex) exp() Complex { pub fn (c Complex) exp() Complex {
a := exp(c1.re) a := exp(c.re)
return Complex { return Complex {
a * cos(c1.im), a * cos(c.im),
a * sin(c1.im) a * sin(c.im)
} }
} }
// Complex Natural Logarithm // Complex Natural Logarithm
// Based on // Based on
// http://www.chemistrylearning.com/logarithm-of-complex-number/ // http://www.chemistrylearning.com/logarithm-of-complex-number/
pub fn (c1 Complex) ln() Complex { pub fn (c Complex) ln() Complex {
return Complex { return Complex {
log(c1.mod()), log(c.abs()),
atan2(c1.im,c1.re) c.angle()
} }
} }

View File

@ -11,9 +11,9 @@ struct Fraction {
} }
// A factory function for creating a Fraction, adds a boundary condition // A factory function for creating a Fraction, adds a boundary condition
pub fn fraction(n i64,d i64) Fraction{ pub fn fraction(n i64, d i64) Fraction{
if d != 0 { if d != 0 {
return Fraction{n,d} return Fraction{n, d}
} }
else { else {
panic('Denominator cannot be zero') panic('Denominator cannot be zero')
@ -28,20 +28,20 @@ pub fn (f Fraction) str() string {
// Fraction add using operator overloading // Fraction add using operator overloading
pub fn (f1 Fraction) + (f2 Fraction) Fraction { pub fn (f1 Fraction) + (f2 Fraction) Fraction {
if f1.d == f2.d { if f1.d == f2.d {
return Fraction{f1.n + f2.n,f1.d} return Fraction{f1.n + f2.n, f1.d}
} }
else { else {
return Fraction{(f1.n * f2.d) + (f2.n * f1.d),f1.d * f2.d} return Fraction{(f1.n * f2.d) + (f2.n * f1.d), f1.d * f2.d}
} }
} }
// Fraction substract using operator overloading // Fraction substract using operator overloading
pub fn (f1 Fraction) - (f2 Fraction) Fraction { pub fn (f1 Fraction) - (f2 Fraction) Fraction {
if f1.d == f2.d { if f1.d == f2.d {
return Fraction{f1.n - f2.n,f1.d} return Fraction{f1.n - f2.n, f1.d}
} }
else { else {
return Fraction{(f1.n * f2.d) - (f2.n * f1.d),f1.d * f2.d} return Fraction{(f1.n * f2.d) - (f2.n * f1.d), f1.d * f2.d}
} }
} }
@ -67,33 +67,33 @@ pub fn (f1 Fraction) subtract(f2 Fraction) Fraction {
// Fraction multiply method // Fraction multiply method
pub fn (f1 Fraction) multiply(f2 Fraction) Fraction { pub fn (f1 Fraction) multiply(f2 Fraction) Fraction {
return Fraction{f1.n * f2.n,f1.d * f2.d} return Fraction{f1.n * f2.n, f1.d * f2.d}
} }
// Fraction divide method // Fraction divide method
pub fn (f1 Fraction) divide(f2 Fraction) Fraction { pub fn (f1 Fraction) divide(f2 Fraction) Fraction {
return Fraction{f1.n * f2.d,f1.d * f2.n} return Fraction{f1.n * f2.d, f1.d * f2.n}
} }
// Fraction reciprocal method // Fraction reciprocal method
pub fn (f1 Fraction) reciprocal() Fraction { pub fn (f1 Fraction) reciprocal() Fraction {
return Fraction{f1.d,f1.n} return Fraction{f1.d, f1.n}
} }
// Fraction method which gives greatest common divisor of numerator and denominator // Fraction method which gives greatest common divisor of numerator and denominator
pub fn (f1 Fraction) gcd() i64 { pub fn (f1 Fraction) gcd() i64 {
return gcd(f1.n,f1.d) return gcd(f1.n, f1.d)
} }
// Fraction method which reduces the fraction // Fraction method which reduces the fraction
pub fn (f1 Fraction) reduce() Fraction { pub fn (f1 Fraction) reduce() Fraction {
cf := gcd(f1.n,f1.d) cf := gcd(f1.n, f1.d)
return Fraction{f1.n/cf,f1.d/cf} return Fraction{f1.n / cf, f1.d / cf}
} }
// Converts Fraction to decimal // Converts Fraction to decimal
pub fn (f1 Fraction) f64() f64 { pub fn (f1 Fraction) f64() f64 {
return f64(f1.n)/f64(f1.d) return f64(f1.n) / f64(f1.d)
} }
// Compares two Fractions // Compares two Fractions
@ -101,4 +101,4 @@ pub fn (f1 Fraction) equals(f2 Fraction) bool {
r1 := f1.reduce() r1 := f1.reduce()
r2 := f2.reduce() r2 := f2.reduce()
return (r1.n == r2.n) && (r1.d == r2.d) return (r1.n == r2.n) && (r1.d == r2.d)
} }