complex, fraction: simplify and format source code
parent
9907f07602
commit
00ea112b66
|
@ -26,10 +26,15 @@ pub fn (c Complex) str() string {
|
|||
return out
|
||||
}
|
||||
|
||||
// Complex Absolute value
|
||||
// Complex Modulus value
|
||||
// mod() and abs() return the same
|
||||
pub fn (c Complex) abs() f64 {
|
||||
return C.hypot(c.re, c.im)
|
||||
}
|
||||
pub fn (c Complex) mod() f64 {
|
||||
return c.abs()
|
||||
}
|
||||
|
||||
|
||||
// Complex Angle
|
||||
pub fn (c Complex) angle() f64 {
|
||||
|
@ -93,40 +98,33 @@ pub fn (c1 Complex) divide(c2 Complex) Complex {
|
|||
}
|
||||
|
||||
// Complex Conjugate
|
||||
pub fn (c1 Complex) conjugate() Complex{
|
||||
return Complex{c1.re,-c1.im}
|
||||
pub fn (c Complex) conjugate() Complex{
|
||||
return Complex{c.re, -c.im}
|
||||
}
|
||||
|
||||
// Complex Additive Inverse
|
||||
// Based on
|
||||
// http://tutorial.math.lamar.edu/Extras/ComplexPrimer/Arithmetic.aspx
|
||||
pub fn (c1 Complex) addinv() Complex {
|
||||
return Complex{-c1.re,-c1.im}
|
||||
pub fn (c Complex) addinv() Complex {
|
||||
return Complex{-c.re, -c.im}
|
||||
}
|
||||
|
||||
// Complex Multiplicative Inverse
|
||||
// Based on
|
||||
// http://tutorial.math.lamar.edu/Extras/ComplexPrimer/Arithmetic.aspx
|
||||
pub fn (c1 Complex) mulinv() Complex {
|
||||
pub fn (c Complex) mulinv() Complex {
|
||||
return Complex {
|
||||
c1.re / (pow(c1.re,2) + pow(c1.im,2)),
|
||||
-c1.im / (pow(c1.re,2) + pow(c1.im,2))
|
||||
c.re / (c.re * c.re + c.im * c.im),
|
||||
-c.im / (c.re * c.re + c.im * c.im)
|
||||
}
|
||||
}
|
||||
|
||||
// Complex Mod or Absolute
|
||||
// Based on
|
||||
// http://tutorial.math.lamar.edu/Extras/ComplexPrimer/ConjugateModulus.aspx
|
||||
pub fn (c1 Complex) mod() f64 {
|
||||
return sqrt(pow(c1.re,2)+pow(c1.im,2))
|
||||
}
|
||||
|
||||
// Complex Power
|
||||
// Based on
|
||||
// https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers/multiplying-and-dividing-complex-numbers-in-polar-form/a/complex-number-polar-form-review
|
||||
pub fn (c1 Complex) pow(n f64) Complex {
|
||||
r := pow(c1.mod(),n)
|
||||
angle := atan2(c1.im,c1.re)
|
||||
pub fn (c Complex) pow(n f64) Complex {
|
||||
r := pow(c.abs(), n)
|
||||
angle := c.angle()
|
||||
return Complex {
|
||||
r * cos(n * angle),
|
||||
r * sin(n * angle)
|
||||
|
@ -134,29 +132,29 @@ pub fn (c1 Complex) pow(n f64) Complex {
|
|||
}
|
||||
|
||||
// Complex nth root
|
||||
pub fn (c1 Complex) root(n f64) Complex {
|
||||
return c1.pow(1.0/n)
|
||||
pub fn (c Complex) root(n f64) Complex {
|
||||
return c.pow(1.0 / n)
|
||||
}
|
||||
|
||||
// Complex Exponential
|
||||
// Using Euler's Identity
|
||||
// Based on
|
||||
// https://www.math.wisc.edu/~angenent/Free-Lecture-Notes/freecomplexnumbers.pdf
|
||||
pub fn (c1 Complex) exp() Complex {
|
||||
a := exp(c1.re)
|
||||
pub fn (c Complex) exp() Complex {
|
||||
a := exp(c.re)
|
||||
return Complex {
|
||||
a * cos(c1.im),
|
||||
a * sin(c1.im)
|
||||
a * cos(c.im),
|
||||
a * sin(c.im)
|
||||
}
|
||||
}
|
||||
|
||||
// Complex Natural Logarithm
|
||||
// Based on
|
||||
// http://www.chemistrylearning.com/logarithm-of-complex-number/
|
||||
pub fn (c1 Complex) ln() Complex {
|
||||
pub fn (c Complex) ln() Complex {
|
||||
return Complex {
|
||||
log(c1.mod()),
|
||||
atan2(c1.im,c1.re)
|
||||
log(c.abs()),
|
||||
c.angle()
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue