complex, fraction: simplify and format source code

pull/1078/head
hazohelet 2019-07-10 20:51:48 +09:00 committed by Alexander Medvednikov
parent 9907f07602
commit 00ea112b66
2 changed files with 48 additions and 50 deletions

View File

@ -9,8 +9,8 @@ struct Complex {
im f64
}
pub fn complex(re f64,im f64) Complex {
return Complex{re,im}
pub fn complex(re f64, im f64) Complex {
return Complex{re, im}
}
// To String method
@ -26,10 +26,15 @@ pub fn (c Complex) str() string {
return out
}
// Complex Absolute value
// Complex Modulus value
// mod() and abs() return the same
pub fn (c Complex) abs() f64 {
return C.hypot(c.re,c.im)
return C.hypot(c.re, c.im)
}
pub fn (c Complex) mod() f64 {
return c.abs()
}
// Complex Angle
pub fn (c Complex) angle() f64 {
@ -38,12 +43,12 @@ pub fn (c Complex) angle() f64 {
// Complex Addition c1 + c2
pub fn (c1 Complex) + (c2 Complex) Complex {
return Complex{c1.re+c2.re,c1.im+c2.im}
return Complex{c1.re + c2.re, c1.im + c2.im}
}
// Complex Substraction c1 - c2
pub fn (c1 Complex) - (c2 Complex) Complex {
return Complex{c1.re-c2.re,c1.im-c2.im}
return Complex{c1.re - c2.re, c1.im - c2.im}
}
// Complex Multiplication c1 * c2
@ -87,76 +92,69 @@ pub fn (c1 Complex) multiply(c2 Complex) Complex {
pub fn (c1 Complex) divide(c2 Complex) Complex {
denom := (c2.re * c2.re) + (c2.im * c2.im)
return Complex {
((c1.re * c2.re) + ((c1.im * -c2.im) * -1))/denom,
((c1.re * -c2.im) + (c1.im * c2.re))/denom
((c1.re * c2.re) + ((c1.im * -c2.im) * -1)) / denom,
((c1.re * -c2.im) + (c1.im * c2.re)) / denom
}
}
// Complex Conjugate
pub fn (c1 Complex) conjugate() Complex{
return Complex{c1.re,-c1.im}
pub fn (c Complex) conjugate() Complex{
return Complex{c.re, -c.im}
}
// Complex Additive Inverse
// Based on
// http://tutorial.math.lamar.edu/Extras/ComplexPrimer/Arithmetic.aspx
pub fn (c1 Complex) addinv() Complex {
return Complex{-c1.re,-c1.im}
pub fn (c Complex) addinv() Complex {
return Complex{-c.re, -c.im}
}
// Complex Multiplicative Inverse
// Based on
// http://tutorial.math.lamar.edu/Extras/ComplexPrimer/Arithmetic.aspx
pub fn (c1 Complex) mulinv() Complex {
pub fn (c Complex) mulinv() Complex {
return Complex {
c1.re / (pow(c1.re,2) + pow(c1.im,2)),
-c1.im / (pow(c1.re,2) + pow(c1.im,2))
c.re / (c.re * c.re + c.im * c.im),
-c.im / (c.re * c.re + c.im * c.im)
}
}
// Complex Mod or Absolute
// Based on
// http://tutorial.math.lamar.edu/Extras/ComplexPrimer/ConjugateModulus.aspx
pub fn (c1 Complex) mod() f64 {
return sqrt(pow(c1.re,2)+pow(c1.im,2))
}
// Complex Power
// Based on
// https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers/multiplying-and-dividing-complex-numbers-in-polar-form/a/complex-number-polar-form-review
pub fn (c1 Complex) pow(n f64) Complex {
r := pow(c1.mod(),n)
angle := atan2(c1.im,c1.re)
pub fn (c Complex) pow(n f64) Complex {
r := pow(c.abs(), n)
angle := c.angle()
return Complex {
r * cos(n*angle),
r * sin(n*angle)
r * cos(n * angle),
r * sin(n * angle)
}
}
// Complex nth root
pub fn (c1 Complex) root(n f64) Complex {
return c1.pow(1.0/n)
pub fn (c Complex) root(n f64) Complex {
return c.pow(1.0 / n)
}
// Complex Exponential
// Using Euler's Identity
// Based on
// https://www.math.wisc.edu/~angenent/Free-Lecture-Notes/freecomplexnumbers.pdf
pub fn (c1 Complex) exp() Complex {
a := exp(c1.re)
pub fn (c Complex) exp() Complex {
a := exp(c.re)
return Complex {
a * cos(c1.im),
a * sin(c1.im)
a * cos(c.im),
a * sin(c.im)
}
}
// Complex Natural Logarithm
// Based on
// http://www.chemistrylearning.com/logarithm-of-complex-number/
pub fn (c1 Complex) ln() Complex {
pub fn (c Complex) ln() Complex {
return Complex {
log(c1.mod()),
atan2(c1.im,c1.re)
log(c.abs()),
c.angle()
}
}

View File

@ -11,9 +11,9 @@ struct Fraction {
}
// A factory function for creating a Fraction, adds a boundary condition
pub fn fraction(n i64,d i64) Fraction{
pub fn fraction(n i64, d i64) Fraction{
if d != 0 {
return Fraction{n,d}
return Fraction{n, d}
}
else {
panic('Denominator cannot be zero')
@ -28,20 +28,20 @@ pub fn (f Fraction) str() string {
// Fraction add using operator overloading
pub fn (f1 Fraction) + (f2 Fraction) Fraction {
if f1.d == f2.d {
return Fraction{f1.n + f2.n,f1.d}
return Fraction{f1.n + f2.n, f1.d}
}
else {
return Fraction{(f1.n * f2.d) + (f2.n * f1.d),f1.d * f2.d}
return Fraction{(f1.n * f2.d) + (f2.n * f1.d), f1.d * f2.d}
}
}
// Fraction substract using operator overloading
pub fn (f1 Fraction) - (f2 Fraction) Fraction {
if f1.d == f2.d {
return Fraction{f1.n - f2.n,f1.d}
return Fraction{f1.n - f2.n, f1.d}
}
else {
return Fraction{(f1.n * f2.d) - (f2.n * f1.d),f1.d * f2.d}
return Fraction{(f1.n * f2.d) - (f2.n * f1.d), f1.d * f2.d}
}
}
@ -67,33 +67,33 @@ pub fn (f1 Fraction) subtract(f2 Fraction) Fraction {
// Fraction multiply method
pub fn (f1 Fraction) multiply(f2 Fraction) Fraction {
return Fraction{f1.n * f2.n,f1.d * f2.d}
return Fraction{f1.n * f2.n, f1.d * f2.d}
}
// Fraction divide method
pub fn (f1 Fraction) divide(f2 Fraction) Fraction {
return Fraction{f1.n * f2.d,f1.d * f2.n}
return Fraction{f1.n * f2.d, f1.d * f2.n}
}
// Fraction reciprocal method
pub fn (f1 Fraction) reciprocal() Fraction {
return Fraction{f1.d,f1.n}
return Fraction{f1.d, f1.n}
}
// Fraction method which gives greatest common divisor of numerator and denominator
pub fn (f1 Fraction) gcd() i64 {
return gcd(f1.n,f1.d)
return gcd(f1.n, f1.d)
}
// Fraction method which reduces the fraction
pub fn (f1 Fraction) reduce() Fraction {
cf := gcd(f1.n,f1.d)
return Fraction{f1.n/cf,f1.d/cf}
cf := gcd(f1.n, f1.d)
return Fraction{f1.n / cf, f1.d / cf}
}
// Converts Fraction to decimal
pub fn (f1 Fraction) f64() f64 {
return f64(f1.n)/f64(f1.d)
return f64(f1.n) / f64(f1.d)
}
// Compares two Fractions