parser: fix `for i, mut val in vals {; examples: vfmt flappybird

pull/7606/head
Alexander Medvednikov 2020-12-27 12:02:01 +01:00
parent bcdf3ca0cf
commit 0d43ff2453
4 changed files with 96 additions and 129 deletions

View File

@ -1,4 +1,3 @@
module main
import gg
@ -7,7 +6,6 @@ import os
import time
import math
import rand
import neuroevolution
const (
@ -22,7 +20,6 @@ mut:
y f64 = 250
width f64 = 40
height f64 = 30
alive bool = true
gravity f64
velocity f64 = 0.3
@ -43,12 +40,8 @@ fn (b Bird) is_dead(height f64, pipes []Pipe) bool {
return true
}
for pipe in pipes {
if !(
b.x > pipe.x + pipe.width ||
b.x + b.width < pipe.x ||
b.y > pipe.y + pipe.height ||
b.y + b.height < pipe.y
) {
if !(b.x > pipe.x + pipe.width ||
b.x + b.width < pipe.x || b.y > pipe.y + pipe.height || b.y + b.height < pipe.y) {
return true
}
}
@ -79,7 +72,6 @@ mut:
bird gg.Image
pipetop gg.Image
pipebottom gg.Image
pipes []Pipe
birds []Bird
score int
@ -88,12 +80,10 @@ mut:
height f64 = win_height
spawn_interval f64 = 90
interval f64
nv neuroevolution.Generations
gen []neuroevolution.Network
alives int
generation int
background_speed f64 = 0.5
background_x f64
}
@ -104,7 +94,6 @@ fn (mut app App) start() {
app.pipes = []
app.birds = []
app.gen = app.nv.generate()
for _ in 0 .. app.gen.len {
app.birds << Bird{}
}
@ -118,14 +107,12 @@ fn (app &App) is_it_end() bool {
return false
}
}
return true
}
fn (mut app App) update() {
app.background_x += app.background_speed
mut next_holl := f64(0)
if app.birds.len > 0 {
for i := 0; i < app.pipes.len; i += 2 {
if app.pipes[i].x + app.pipes[i].width > app.birds[0].x {
@ -134,8 +121,7 @@ fn (mut app App) update() {
}
}
}
for mut j, bird in app.birds {
for j, mut bird in app.birds {
if bird.alive {
inputs := [
bird.y / app.height,
@ -145,9 +131,7 @@ fn (mut app App) update() {
if res[0] > 0.5 {
bird.flap()
}
bird.update()
if bird.is_dead(app.height, app.pipes) {
bird.alive = false
app.alives--
@ -156,10 +140,8 @@ fn (mut app App) update() {
app.start()
}
}
}
}
for k := 0; k < app.pipes.len; k++ {
app.pipes[k].update()
if app.pipes[k].is_out() {
@ -167,44 +149,35 @@ fn (mut app App) update() {
k--
}
}
if app.interval == 0 {
delta_bord := f64(50)
pipe_holl := f64(120)
holl_position := math.round(rand.f64() * (app.height - delta_bord * 2.0 - pipe_holl)) + delta_bord
holl_position := math.round(rand.f64() *
(app.height - delta_bord * 2.0 - pipe_holl)) + delta_bord
app.pipes << Pipe{
x: app.width
y: 0
height: holl_position
}
app.pipes << Pipe{
x: app.width
y: holl_position + pipe_holl
height: app.height
}
}
app.interval++
if app.interval == app.spawn_interval {
app.interval = 0
}
app.score++
app.max_score = if app.score > app.max_score {
app.score
} else {
app.max_score
}
app.max_score = if app.score > app.max_score { app.score } else { app.max_score }
}
fn main() {
mut app := &App{
gg: 0
}
app.gg = gg.new_context({
app.gg = gg.new_context(
bg_color: gx.white
width: win_width
height: win_height
@ -215,7 +188,7 @@ fn main() {
user_data: app
init_fn: init_images
font_path: os.resource_abs_path('../assets/fonts/RobotoMono-Regular.ttf')
})
)
app.nv = neuroevolution.Generations{
population: 50
network: [2, 2, 1]
@ -248,20 +221,22 @@ fn frame(app &App) {
fn (app &App) display() {
for i := 0; i < int(math.ceil(app.width / app.background.width) + 1.0); i++ {
background_x := i * app.background.width - math.floor(int(app.background_x) % int(app.background.width))
app.gg.draw_image(f32(background_x), 0, app.background.width, app.background.height, app.background)
app.gg.draw_image(f32(background_x), 0, app.background.width, app.background.height,
app.background)
}
for i, pipe in app.pipes {
if i % 2 == 0 {
app.gg.draw_image(f32(pipe.x), f32(pipe.y + pipe.height - app.pipetop.height), app.pipetop.width, app.pipetop.height, app.pipetop)
app.gg.draw_image(f32(pipe.x), f32(pipe.y + pipe.height - app.pipetop.height),
app.pipetop.width, app.pipetop.height, app.pipetop)
} else {
app.gg.draw_image(f32(pipe.x), f32(pipe.y), app.pipebottom.width, app.pipebottom.height, app.pipebottom)
app.gg.draw_image(f32(pipe.x), f32(pipe.y), app.pipebottom.width, app.pipebottom.height,
app.pipebottom)
}
}
for bird in app.birds {
if bird.alive {
app.gg.draw_image(f32(bird.x), f32(bird.y), app.bird.width, app.bird.height, app.bird)
app.gg.draw_image(f32(bird.x), f32(bird.y), app.bird.width, app.bird.height,
app.bird)
}
}
app.gg.draw_text_def(10, 25, 'Score: $app.score')

View File

@ -1,4 +1,3 @@
module neuroevolution
import rand
@ -49,12 +48,10 @@ mut:
}
fn (mut n Network) populate(network []int) {
assert network.len >= 2
input := network[0]
hiddens := network.slice(1, network.len - 1)
output := network[network.len - 1]
mut index := 0
mut previous_neurons := 0
mut input_layer := Layer{
@ -62,7 +59,6 @@ fn (mut n Network) populate(network []int) {
}
input_layer.populate(input, previous_neurons)
n.layers << input_layer
previous_neurons = input
index++
for hidden in hiddens {
@ -74,7 +70,6 @@ fn (mut n Network) populate(network []int) {
n.layers << hidden_layer
index++
}
mut output_layer := Layer{
id: index
}
@ -83,7 +78,6 @@ fn (mut n Network) populate(network []int) {
}
fn (n Network) get_save() Save {
mut save := Save{}
for layer in n.layers {
save.neurons << layer.neurons.len
@ -97,11 +91,9 @@ fn (n Network) get_save() Save {
}
fn (mut n Network) set_save(save Save) {
mut previous_neurons := 0
mut index := 0
mut index_weights := 0
n.layers = []
for save_neuron in save.neurons {
mut layer := Layer{
@ -123,13 +115,10 @@ fn (mut n Network) set_save(save Save) {
pub fn (mut n Network) compute(inputs []f64) []f64 {
assert n.layers.len > 0
assert inputs.len == n.layers[0].neurons.len
for i, input in inputs {
n.layers[0].neurons[i].value = input
}
mut prev_layer := n.layers[0]
for i in 1 .. n.layers.len {
for j, neuron in n.layers[i].neurons {
mut sum := f64(0)
@ -140,13 +129,11 @@ pub fn (mut n Network) compute(inputs []f64) []f64 {
}
prev_layer = n.layers[i]
}
mut outputs := []f64{}
mut last_layer := n.layers[n.layers.len - 1]
for neuron in last_layer.neurons {
outputs << neuron.value
}
return outputs
}
@ -174,65 +161,48 @@ mut:
}
fn (mut g Generation) add_genome(genome Genome) {
mut i := 0
for gg in g.genomes {
if genome.score > gg.score {
break
}
i++
}
g.genomes.insert(i, genome)
}
fn (g1 Genome) breed(g2 Genome, nb_child int) []Save {
mut datas := []Save{}
for _ in 0 .. nb_child {
mut data := g1.network.clone()
for i, weight in g2.network.weights {
if rand.f64() <= 0.5 {
data.weights[i] = weight
}
}
for i, _ in data.weights {
if rand.f64() <= 0.1 {
data.weights[i] += (rand.f64() * 2 - 1) * 0.5
}
}
datas << data
}
return datas
}
fn (g Generation) next(population int) []Save {
mut nexts := []Save{}
if population == 0 {
return nexts
}
keep := round(population, 0.2)
for i in 0 .. keep {
if nexts.len < population {
nexts << g.genomes[i].network.clone()
}
}
random := round(population, 0.2)
for _ in 0 .. random {
if nexts.len < population {
mut n := g.genomes[0].network.clone()
for k, _ in n.weights {
@ -241,7 +211,6 @@ fn (g Generation) next(population int) []Save {
nexts << n
}
}
mut max := 0
out: for {
for i in 0 .. max {
@ -258,7 +227,6 @@ fn (g Generation) next(population int) []Save {
max = 0
}
}
return nexts
}
@ -277,7 +245,6 @@ fn (mut gs Generations) first() []Save {
nn.populate(gs.network)
out << nn.get_save()
}
gs.generations << Generation{}
return out
}
@ -299,24 +266,16 @@ fn (mut gs Generations) restart() {
}
pub fn (mut gs Generations) generate() []Network {
saves := if gs.generations.len == 0 {
gs.first()
} else {
gs.next()
}
saves := if gs.generations.len == 0 { gs.first() } else { gs.next() }
mut nns := []Network{}
for save in saves {
mut nn := Network{}
nn.set_save(save)
nns << nn
}
if gs.generations.len >= 2 {
gs.generations.delete(0)
}
return nns
}
@ -326,4 +285,3 @@ pub fn (mut gs Generations) network_score(network Network, score int) {
network: network.get_save()
})
}

View File

@ -51,6 +51,31 @@ pub fn (mut ctx Context) create_image(file string) Image {
return img
}
// TODO copypasta
pub fn (mut ctx Context) create_image_with_size(file string, width int, height int) Image {
if !C.sg_isvalid() {
// Sokol is not initialized yet, add stbi object to a queue/cache
// ctx.image_queue << file
stb_img := stbi.load(file) or { return Image{} }
img := Image{
width: width
height: height
nr_channels: stb_img.nr_channels
ok: false
data: stb_img.data
ext: stb_img.ext
path: file
id: ctx.image_cache.len
}
ctx.image_cache << img
return img
}
mut img := create_image(file)
img.id = ctx.image_cache.len
ctx.image_cache << img
return img
}
// TODO remove this
fn create_image(file string) Image {
if !os.exists(file) {
@ -127,7 +152,11 @@ pub fn (ctx &Context) draw_image(x f32, y f32, width f32, height f32, img_ &Imag
x0 := f32(x) * ctx.scale
y0 := f32(y) * ctx.scale
x1 := f32(x + width) * ctx.scale
y1 := f32(y + height) * ctx.scale
mut y1 := f32(y + height) * ctx.scale
if height == 0 {
scale := f32(img.width) / f32(width)
y1 = f32(y + int(f32(img.height) / scale)) * ctx.scale
}
//
sgl.load_pipeline(ctx.timage_pip)
sgl.enable_texture()

View File

@ -80,8 +80,8 @@ fn (mut p Parser) for_stmt() ast.Stmt {
return for_c_stmt
} else if p.peek_tok.kind in [.key_in, .comma] ||
(p.tok.kind == .key_mut && p.peek_tok2.kind in [.key_in, .comma]) {
// `for i in vals`, `for i in start .. end`
val_is_mut := p.tok.kind == .key_mut
// `for i in vals`, `for i in start .. end`, `for mut user in users`, `for i, mut user in users`
mut val_is_mut := p.tok.kind == .key_mut
if val_is_mut {
p.next()
}
@ -91,6 +91,11 @@ fn (mut p Parser) for_stmt() ast.Stmt {
mut val_var_name := p.check_name()
if p.tok.kind == .comma {
p.next()
if p.tok.kind == .key_mut {
// `for i, mut user in users {`
p.next()
val_is_mut = true
}
key_var_name = val_var_name
val_var_pos = p.tok.position()
val_var_name = p.check_name()