example/test: add a binary search tree example and test (#8145)
parent
5067046538
commit
103901a5cb
|
@ -0,0 +1,106 @@
|
|||
// Binary Search Tree example by @SleepyRoy
|
||||
|
||||
// TODO: make Node.value generic once it's robust enough
|
||||
// TODO: `return match` instead of returns everywhere inside match
|
||||
|
||||
struct Empty {}
|
||||
|
||||
struct Node {
|
||||
value f64
|
||||
left Tree
|
||||
right Tree
|
||||
}
|
||||
|
||||
type Tree = Empty | Node
|
||||
|
||||
// return size(number of nodes) of BST
|
||||
fn size(tree Tree) int {
|
||||
return match tree {
|
||||
// TODO: remove int() once match gets smarter
|
||||
Empty { int(0) }
|
||||
Node { 1 + size(tree.left) + size(tree.right) }
|
||||
}
|
||||
}
|
||||
|
||||
// insert a value to BST
|
||||
fn insert(tree Tree, x f64) Tree {
|
||||
match tree {
|
||||
Empty { return Node{x, tree, tree} }
|
||||
Node {
|
||||
return if x == tree.value {
|
||||
tree
|
||||
} else if x < tree.value {
|
||||
Node{...tree, left: insert(tree.left, x)}
|
||||
} else {
|
||||
Node{...tree, right: insert(tree.right, x)}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// whether able to find a value in BST
|
||||
fn search(tree Tree, x f64) bool {
|
||||
match tree {
|
||||
Empty { return false }
|
||||
Node {
|
||||
return if x == tree.value {
|
||||
true
|
||||
} else if x < tree.value {
|
||||
search(tree.left, x)
|
||||
} else {
|
||||
search(tree.right, x)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// find the minimal value of a BST
|
||||
fn min(tree Tree) f64 {
|
||||
match tree {
|
||||
Empty { return 1e100 }
|
||||
Node { return if tree.value < min(tree.left) { tree.value } else { min(tree.left) } }
|
||||
}
|
||||
}
|
||||
|
||||
// delete a value in BST (if nonexist do nothing)
|
||||
fn delete(tree Tree, x f64) Tree {
|
||||
match tree {
|
||||
Empty { return tree }
|
||||
Node {
|
||||
if tree.left is Node && tree.right is Node {
|
||||
return if x < tree.value {
|
||||
Node{...tree, left: delete(tree.left, x)}
|
||||
} else if x > tree.value {
|
||||
Node{...tree, right: delete(tree.right, x)}
|
||||
} else {
|
||||
Node{...tree, value: min(tree.right), right: delete(tree.right, min(tree.right))}
|
||||
}
|
||||
} else if tree.left is Node {
|
||||
return if x == tree.value { tree.left } else { Node{...tree, left: delete(tree.left, x)} }
|
||||
} else {
|
||||
if x == tree.value { return tree.right } else { return Node{...tree, right: delete(tree.right, x)} }
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
mut tree := Tree(Empty{})
|
||||
input := [0.3, 0.2, 0.5, 0.0, 0.6, 0.8, 0.9, 1.0, 0.1, 0.4, 0.7]
|
||||
for i in input {
|
||||
tree = insert(tree, i)
|
||||
}
|
||||
println('[1] after insertion tree size is ${size(tree)}') // 11
|
||||
del := [-0.3, 0.0, 0.3, 0.6, 1.0, 1.5]
|
||||
for i in del {
|
||||
tree = delete(tree, i)
|
||||
}
|
||||
print('[2] after deletion tree size is ${size(tree)}, ') // 7
|
||||
print('and these elements were deleted: ') // 0.0 0.3 0.6 1.0
|
||||
for i in input {
|
||||
if !search(tree, i) {
|
||||
print('$i ')
|
||||
}
|
||||
}
|
||||
println('')
|
||||
}
|
|
@ -1,6 +1,6 @@
|
|||
type Expr = IfExpr | IntegerLiteral
|
||||
type Stmt = FnDecl | StructDecl
|
||||
type Node = Expr | Stmt
|
||||
type ExprStmt = Expr | Stmt
|
||||
|
||||
struct FnDecl {
|
||||
pos int
|
||||
|
@ -540,38 +540,109 @@ fn handle(e Expr) string {
|
|||
return ''
|
||||
}
|
||||
|
||||
// for a binary tree
|
||||
// Binary Search Tree test by @SleepyRoy
|
||||
// TODO: make Node.value generic once it's robust enough
|
||||
// TODO: `return match` instead of returns everywhere inside match
|
||||
|
||||
struct Empty {}
|
||||
|
||||
struct Node_ {
|
||||
// TODO: make value generic once it's more robust
|
||||
struct Node {
|
||||
value f64
|
||||
left Tree
|
||||
right Tree
|
||||
}
|
||||
|
||||
type Tree = Empty | Node_
|
||||
type Tree = Empty | Node
|
||||
|
||||
// return size(number of nodes) of BST
|
||||
fn size(tree Tree) int {
|
||||
return match tree {
|
||||
// TODO: remove int() here once match gets smarter
|
||||
// TODO: remove int() once match gets smarter
|
||||
Empty { int(0) }
|
||||
Node_ { 1 + size(tree.left) + size(tree.right) }
|
||||
Node { 1 + size(tree.left) + size(tree.right) }
|
||||
}
|
||||
}
|
||||
|
||||
fn sum(tree Tree) f64 {
|
||||
return match tree {
|
||||
// TODO: remove f64() here once match gets smarter
|
||||
Empty { f64(0) }
|
||||
Node_ { tree.value + sum(tree.left) + sum(tree.right) }
|
||||
// insert a value to BST
|
||||
fn insert(tree Tree, x f64) Tree {
|
||||
match tree {
|
||||
Empty { return Node{x, tree, tree} }
|
||||
Node {
|
||||
return if x == tree.value {
|
||||
tree
|
||||
} else if x < tree.value {
|
||||
Node{...tree, left: insert(tree.left, x)}
|
||||
} else {
|
||||
Node{...tree, right: insert(tree.right, x)}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_binary_tree_operation() {
|
||||
left := Node_{0.2, Empty{}, Empty{}}
|
||||
right := Node_{0.3, Empty{}, Node_{0.4, Empty{}, Empty{}}}
|
||||
tree := Node_{0.5, left, right}
|
||||
assert size(tree) == 4
|
||||
assert sum(tree) == 1.4
|
||||
// whether able to find a value in BST
|
||||
fn search(tree Tree, x f64) bool {
|
||||
match tree {
|
||||
Empty { return false }
|
||||
Node {
|
||||
return if x == tree.value {
|
||||
true
|
||||
} else if x < tree.value {
|
||||
search(tree.left, x)
|
||||
} else {
|
||||
search(tree.right, x)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// find the minimal value of a BST
|
||||
fn min(tree Tree) f64 {
|
||||
match tree {
|
||||
Empty { return 1e100 }
|
||||
Node { return if tree.value < min(tree.left) { tree.value } else { min(tree.left) } }
|
||||
}
|
||||
}
|
||||
|
||||
// delete a value in BST (if nonexist do nothing)
|
||||
fn delete(tree Tree, x f64) Tree {
|
||||
match tree {
|
||||
Empty { return tree }
|
||||
Node {
|
||||
if tree.left is Node && tree.right is Node {
|
||||
return if x < tree.value {
|
||||
Node{...tree, left: delete(tree.left, x)}
|
||||
} else if x > tree.value {
|
||||
Node{...tree, right: delete(tree.right, x)}
|
||||
} else {
|
||||
Node{...tree, value: min(tree.right), right: delete(tree.right, min(tree.right))}
|
||||
}
|
||||
} else if tree.left is Node {
|
||||
return if x == tree.value { tree.left } else { Node{...tree, left: delete(tree.left, x)} }
|
||||
} else {
|
||||
if x == tree.value { return tree.right } else { return Node{...tree, right: delete(tree.right, x)} }
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_binary_search_tree() {
|
||||
mut tree := Tree(Empty{})
|
||||
input := [0.3, 0.2, 0.5, 0.0, 0.6, 0.8, 0.9, 1.0, 0.1, 0.4, 0.7]
|
||||
for i in input {
|
||||
tree = insert(tree, i)
|
||||
}
|
||||
assert size(tree) == 11
|
||||
del := [-0.3, 0.0, 0.3, 0.6, 1.0, 1.5]
|
||||
for i in del {
|
||||
tree = delete(tree, i)
|
||||
}
|
||||
assert size(tree) == 7
|
||||
mut deleted := []f64{ }
|
||||
for i in input {
|
||||
if !search(tree, i) {
|
||||
deleted << i
|
||||
}
|
||||
}
|
||||
deleted.sort()
|
||||
assert deleted == [0.0, 0.3, 0.6, 1.0]
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue