example/test: add a binary search tree example and test (#8145)
parent
5067046538
commit
103901a5cb
|
@ -0,0 +1,106 @@
|
||||||
|
// Binary Search Tree example by @SleepyRoy
|
||||||
|
|
||||||
|
// TODO: make Node.value generic once it's robust enough
|
||||||
|
// TODO: `return match` instead of returns everywhere inside match
|
||||||
|
|
||||||
|
struct Empty {}
|
||||||
|
|
||||||
|
struct Node {
|
||||||
|
value f64
|
||||||
|
left Tree
|
||||||
|
right Tree
|
||||||
|
}
|
||||||
|
|
||||||
|
type Tree = Empty | Node
|
||||||
|
|
||||||
|
// return size(number of nodes) of BST
|
||||||
|
fn size(tree Tree) int {
|
||||||
|
return match tree {
|
||||||
|
// TODO: remove int() once match gets smarter
|
||||||
|
Empty { int(0) }
|
||||||
|
Node { 1 + size(tree.left) + size(tree.right) }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// insert a value to BST
|
||||||
|
fn insert(tree Tree, x f64) Tree {
|
||||||
|
match tree {
|
||||||
|
Empty { return Node{x, tree, tree} }
|
||||||
|
Node {
|
||||||
|
return if x == tree.value {
|
||||||
|
tree
|
||||||
|
} else if x < tree.value {
|
||||||
|
Node{...tree, left: insert(tree.left, x)}
|
||||||
|
} else {
|
||||||
|
Node{...tree, right: insert(tree.right, x)}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// whether able to find a value in BST
|
||||||
|
fn search(tree Tree, x f64) bool {
|
||||||
|
match tree {
|
||||||
|
Empty { return false }
|
||||||
|
Node {
|
||||||
|
return if x == tree.value {
|
||||||
|
true
|
||||||
|
} else if x < tree.value {
|
||||||
|
search(tree.left, x)
|
||||||
|
} else {
|
||||||
|
search(tree.right, x)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// find the minimal value of a BST
|
||||||
|
fn min(tree Tree) f64 {
|
||||||
|
match tree {
|
||||||
|
Empty { return 1e100 }
|
||||||
|
Node { return if tree.value < min(tree.left) { tree.value } else { min(tree.left) } }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// delete a value in BST (if nonexist do nothing)
|
||||||
|
fn delete(tree Tree, x f64) Tree {
|
||||||
|
match tree {
|
||||||
|
Empty { return tree }
|
||||||
|
Node {
|
||||||
|
if tree.left is Node && tree.right is Node {
|
||||||
|
return if x < tree.value {
|
||||||
|
Node{...tree, left: delete(tree.left, x)}
|
||||||
|
} else if x > tree.value {
|
||||||
|
Node{...tree, right: delete(tree.right, x)}
|
||||||
|
} else {
|
||||||
|
Node{...tree, value: min(tree.right), right: delete(tree.right, min(tree.right))}
|
||||||
|
}
|
||||||
|
} else if tree.left is Node {
|
||||||
|
return if x == tree.value { tree.left } else { Node{...tree, left: delete(tree.left, x)} }
|
||||||
|
} else {
|
||||||
|
if x == tree.value { return tree.right } else { return Node{...tree, right: delete(tree.right, x)} }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn main() {
|
||||||
|
mut tree := Tree(Empty{})
|
||||||
|
input := [0.3, 0.2, 0.5, 0.0, 0.6, 0.8, 0.9, 1.0, 0.1, 0.4, 0.7]
|
||||||
|
for i in input {
|
||||||
|
tree = insert(tree, i)
|
||||||
|
}
|
||||||
|
println('[1] after insertion tree size is ${size(tree)}') // 11
|
||||||
|
del := [-0.3, 0.0, 0.3, 0.6, 1.0, 1.5]
|
||||||
|
for i in del {
|
||||||
|
tree = delete(tree, i)
|
||||||
|
}
|
||||||
|
print('[2] after deletion tree size is ${size(tree)}, ') // 7
|
||||||
|
print('and these elements were deleted: ') // 0.0 0.3 0.6 1.0
|
||||||
|
for i in input {
|
||||||
|
if !search(tree, i) {
|
||||||
|
print('$i ')
|
||||||
|
}
|
||||||
|
}
|
||||||
|
println('')
|
||||||
|
}
|
|
@ -1,6 +1,6 @@
|
||||||
type Expr = IfExpr | IntegerLiteral
|
type Expr = IfExpr | IntegerLiteral
|
||||||
type Stmt = FnDecl | StructDecl
|
type Stmt = FnDecl | StructDecl
|
||||||
type Node = Expr | Stmt
|
type ExprStmt = Expr | Stmt
|
||||||
|
|
||||||
struct FnDecl {
|
struct FnDecl {
|
||||||
pos int
|
pos int
|
||||||
|
@ -540,38 +540,109 @@ fn handle(e Expr) string {
|
||||||
return ''
|
return ''
|
||||||
}
|
}
|
||||||
|
|
||||||
// for a binary tree
|
// Binary Search Tree test by @SleepyRoy
|
||||||
|
// TODO: make Node.value generic once it's robust enough
|
||||||
|
// TODO: `return match` instead of returns everywhere inside match
|
||||||
|
|
||||||
struct Empty {}
|
struct Empty {}
|
||||||
|
|
||||||
struct Node_ {
|
struct Node {
|
||||||
// TODO: make value generic once it's more robust
|
|
||||||
value f64
|
value f64
|
||||||
left Tree
|
left Tree
|
||||||
right Tree
|
right Tree
|
||||||
}
|
}
|
||||||
|
|
||||||
type Tree = Empty | Node_
|
type Tree = Empty | Node
|
||||||
|
|
||||||
|
// return size(number of nodes) of BST
|
||||||
fn size(tree Tree) int {
|
fn size(tree Tree) int {
|
||||||
return match tree {
|
return match tree {
|
||||||
// TODO: remove int() here once match gets smarter
|
// TODO: remove int() once match gets smarter
|
||||||
Empty { int(0) }
|
Empty { int(0) }
|
||||||
Node_ { 1 + size(tree.left) + size(tree.right) }
|
Node { 1 + size(tree.left) + size(tree.right) }
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
fn sum(tree Tree) f64 {
|
// insert a value to BST
|
||||||
return match tree {
|
fn insert(tree Tree, x f64) Tree {
|
||||||
// TODO: remove f64() here once match gets smarter
|
match tree {
|
||||||
Empty { f64(0) }
|
Empty { return Node{x, tree, tree} }
|
||||||
Node_ { tree.value + sum(tree.left) + sum(tree.right) }
|
Node {
|
||||||
|
return if x == tree.value {
|
||||||
|
tree
|
||||||
|
} else if x < tree.value {
|
||||||
|
Node{...tree, left: insert(tree.left, x)}
|
||||||
|
} else {
|
||||||
|
Node{...tree, right: insert(tree.right, x)}
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
fn test_binary_tree_operation() {
|
// whether able to find a value in BST
|
||||||
left := Node_{0.2, Empty{}, Empty{}}
|
fn search(tree Tree, x f64) bool {
|
||||||
right := Node_{0.3, Empty{}, Node_{0.4, Empty{}, Empty{}}}
|
match tree {
|
||||||
tree := Node_{0.5, left, right}
|
Empty { return false }
|
||||||
assert size(tree) == 4
|
Node {
|
||||||
assert sum(tree) == 1.4
|
return if x == tree.value {
|
||||||
|
true
|
||||||
|
} else if x < tree.value {
|
||||||
|
search(tree.left, x)
|
||||||
|
} else {
|
||||||
|
search(tree.right, x)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// find the minimal value of a BST
|
||||||
|
fn min(tree Tree) f64 {
|
||||||
|
match tree {
|
||||||
|
Empty { return 1e100 }
|
||||||
|
Node { return if tree.value < min(tree.left) { tree.value } else { min(tree.left) } }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// delete a value in BST (if nonexist do nothing)
|
||||||
|
fn delete(tree Tree, x f64) Tree {
|
||||||
|
match tree {
|
||||||
|
Empty { return tree }
|
||||||
|
Node {
|
||||||
|
if tree.left is Node && tree.right is Node {
|
||||||
|
return if x < tree.value {
|
||||||
|
Node{...tree, left: delete(tree.left, x)}
|
||||||
|
} else if x > tree.value {
|
||||||
|
Node{...tree, right: delete(tree.right, x)}
|
||||||
|
} else {
|
||||||
|
Node{...tree, value: min(tree.right), right: delete(tree.right, min(tree.right))}
|
||||||
|
}
|
||||||
|
} else if tree.left is Node {
|
||||||
|
return if x == tree.value { tree.left } else { Node{...tree, left: delete(tree.left, x)} }
|
||||||
|
} else {
|
||||||
|
if x == tree.value { return tree.right } else { return Node{...tree, right: delete(tree.right, x)} }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn test_binary_search_tree() {
|
||||||
|
mut tree := Tree(Empty{})
|
||||||
|
input := [0.3, 0.2, 0.5, 0.0, 0.6, 0.8, 0.9, 1.0, 0.1, 0.4, 0.7]
|
||||||
|
for i in input {
|
||||||
|
tree = insert(tree, i)
|
||||||
|
}
|
||||||
|
assert size(tree) == 11
|
||||||
|
del := [-0.3, 0.0, 0.3, 0.6, 1.0, 1.5]
|
||||||
|
for i in del {
|
||||||
|
tree = delete(tree, i)
|
||||||
|
}
|
||||||
|
assert size(tree) == 7
|
||||||
|
mut deleted := []f64{ }
|
||||||
|
for i in input {
|
||||||
|
if !search(tree, i) {
|
||||||
|
deleted << i
|
||||||
|
}
|
||||||
|
}
|
||||||
|
deleted.sort()
|
||||||
|
assert deleted == [0.0, 0.3, 0.6, 1.0]
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue