do not use %, in favour of division, multiplication and addition

pull/13729/head
Delyan Angelov 2022-03-14 10:34:51 +02:00
parent 8d544f276e
commit 18c58c7244
No known key found for this signature in database
GPG Key ID: 66886C0F12D595ED
2 changed files with 45 additions and 19 deletions

View File

@ -68,15 +68,21 @@ pub fn digits(num i64, params DigitParams) []int {
sign = -1
n = -n
}
mut res := []int{}
// if number passed to function is 0 then short-circuit and return 0
if n == 0 {
// short-circuit and return 0
res << 0
return res
}
for n != 0 {
res << int((n % b) * sign)
n /= b
next_n := n / b
res << int(n - next_n * b)
n = next_n
}
if sign == -1 {
res[res.len - 1] *= sign
}
if params.reverse {
@ -88,8 +94,17 @@ pub fn digits(num i64, params DigitParams) []int {
// count_digits return the number of digits in the number passed.
// Number argument accepts any integer type (i8|i16|int|isize|i64) and will be cast to i64
pub fn count_digits(n i64) int {
return int(ceil(log(abs(f64(n) + 1)) / log(10.0)))
pub fn count_digits(number i64) int {
mut n := number
if n == 0 {
return 1
}
mut c := 0
for n != 0 {
n = n / 10
c++
}
return c
}
// minmax returns the minimum and maximum value of the two provided.

View File

@ -930,25 +930,24 @@ fn test_digits() {
assert digits(100, base: 128, reverse: true) == [100]
assert digits(100, base: 256, reverse: true) == [100]
palindrom_digits_in_10th_base := digits(i64(1234432112344321))
assert palindrom_digits_in_10th_base == [1, 2, 3, 4, 4, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 1]
assert digits(1234432112344321) == digits(1234432112344321, reverse: true)
assert digits(1234432112344321) == [1, 2, 3, 4, 4, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 1]
assert digits(125, base: 10, reverse: true) == [1, 2, 5]
assert digits(125, base: 10).reverse() == [1, 2, 5]
digits_in_10th_base := digits(125, base: 10).reverse()
assert digits_in_10th_base == [1, 2, 5]
assert digits(15, base: 16, reverse: true) == [15]
assert digits(127, base: 16, reverse: true) == [7, 15]
assert digits(65535, base: 16, reverse: true) == [15, 15, 15, 15]
assert digits(-65535, base: 16, reverse: true) == [-15, 15, 15, 15]
digits_in_16th_base := digits(15, base: 16).reverse()
assert digits_in_16th_base == [15]
assert digits(-127) == [7, 2, -1]
assert digits(-127).reverse() == [-1, 2, 7]
assert digits(-127, reverse: true) == [-1, 2, 7]
negative_digits := digits(-4, base: 2).reverse()
assert negative_digits == [-1, 0, 0]
assert digits(234, base: 7).reverse() == [4, 5, 3]
digits_in_7th_base := digits(234, base: 7).reverse()
assert digits_in_7th_base == [4, 5, 3]
digits_in_12th_base := digits(67432, base: 12).reverse()
assert digits_in_12th_base == [3, 3, 0, 3, 4]
assert digits(67432, base: 12).reverse() == [3, 3, 0, 3, 4]
}
// Check that math functions of high angle values
@ -995,7 +994,19 @@ fn test_powi() {
}
fn test_count_digits() {
assert count_digits(-999) == 3
assert count_digits(-100) == 3
assert count_digits(-99) == 2
assert count_digits(-10) == 2
assert count_digits(-1) == 1
assert count_digits(0) == 1
assert count_digits(1) == 1
assert count_digits(10) == 2
assert count_digits(99) == 2
assert count_digits(100) == 3
assert count_digits(999) == 3
//
assert count_digits(12345) == 5
assert count_digits(i64(1234567890)) == 10
assert count_digits(123456789012345) == 15
assert count_digits(-67345) == 5
}