vlib/math: Add a pure V backend for vlib/math (#11267)

pull/11276/head
Ulises Jeremias Cornejo Fandos 2021-08-22 18:35:28 -03:00 committed by GitHub
parent dd486bb0fb
commit 1cfc4198f5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
67 changed files with 3805 additions and 1798 deletions

View File

@ -0,0 +1,4 @@
- [x] Move `vsl/vmath` to `vlib/math` as default backend
- [ ] Implement `log` in pure V
- [ ] Implement `pow` in pure V
- [ ] Define functions for initial release of hardware implementations

View File

@ -0,0 +1,8 @@
module math
fn C.fabs(x f64) f64
[inline]
pub fn abs(a f64) f64 {
return C.fabs(a)
}

View File

@ -0,0 +1,9 @@
module math
fn JS.Math.abs(x f64) f64
// Returns the absolute value.
[inline]
pub fn abs(a f64) f64 {
return JS.Math.abs(a)
}

18
vlib/math/abs.v 100644
View File

@ -0,0 +1,18 @@
module math
// Returns the absolute value.
[inline]
pub fn abs(x f64) f64 {
if x > 0.0 {
return x
}
return -x
}
[inline]
pub fn fabs(x f64) f64 {
if x > 0.0 {
return x
}
return -x
}

View File

@ -1,12 +0,0 @@
module math
// inf returns positive infinity if sign >= 0, negative infinity if sign < 0.
pub fn inf(sign int) f64 {
v := if sign >= 0 { uvinf } else { uvneginf }
return f64_from_bits(v)
}
// nan returns an IEEE 754 ``not-a-number'' value.
pub fn nan() f64 {
return f64_from_bits(uvnan)
}

View File

@ -11,10 +11,22 @@ const (
mask = 0x7FF
shift = 64 - 11 - 1
bias = 1023
normalize_smallest_mask = (u64(1) << 52)
sign_mask = (u64(1) << 63)
frac_mask = ((u64(1) << u64(shift)) - u64(1))
)
// inf returns positive infinity if sign >= 0, negative infinity if sign < 0.
pub fn inf(sign int) f64 {
v := if sign >= 0 { math.uvinf } else { math.uvneginf }
return f64_from_bits(v)
}
// nan returns an IEEE 754 ``not-a-number'' value.
pub fn nan() f64 {
return f64_from_bits(math.uvnan)
}
// is_nan reports whether f is an IEEE 754 ``not-a-number'' value.
pub fn is_nan(f f64) bool {
// IEEE 754 says that only NaNs satisfy f != f.
@ -36,13 +48,16 @@ pub fn is_inf(f f64, sign int) bool {
return (sign >= 0 && f > max_f64) || (sign <= 0 && f < -max_f64)
}
// NOTE: (joe-c) exponent notation is borked
pub fn is_finite(f f64) bool {
return !is_nan(f) && !is_inf(f, 0)
}
// normalize returns a normal number y and exponent exp
// satisfying x == y × 2**exp. It assumes x is finite and non-zero.
// pub fn normalize(x f64) (f64, int) {
// smallest_normal := 2.2250738585072014e-308 // 2**-1022
// if abs(x) < smallest_normal {
// return x * (1 << 52), -52
// }
// return x, 0
// }
pub fn normalize(x f64) (f64, int) {
smallest_normal := 2.2250738585072014e-308 // 2**-1022
if abs(x) < smallest_normal {
return x * math.normalize_smallest_mask, -52
}
return x, 0
}

View File

@ -0,0 +1,9 @@
module math
fn C.cbrt(x f64) f64
// cbrt calculates cubic root.
[inline]
pub fn cbrt(a f64) f64 {
return C.cbrt(a)
}

View File

@ -0,0 +1,9 @@
module math
fn JS.Math.cbrt(x f64) f64
// cbrt calculates cubic root.
[inline]
pub fn cbrt(a f64) f64 {
return JS.Math.cbrt(a)
}

52
vlib/math/cbrt.v 100644
View File

@ -0,0 +1,52 @@
module math
// cbrt returns the cube root of a.
//
// special cases are:
// cbrt(±0) = ±0
// cbrt(±inf) = ±inf
// cbrt(nan) = nan
pub fn cbrt(a f64) f64 {
mut x := a
b1 := 715094163 // (682-0.03306235651)*2**20
b2 := 696219795 // (664-0.03306235651)*2**20
c := 5.42857142857142815906e-01 // 19/35 = 0x3FE15F15F15F15F1
d := -7.05306122448979611050e-01 // -864/1225 = 0xBFE691DE2532C834
e_ := 1.41428571428571436819e+00 // 99/70 = 0x3FF6A0EA0EA0EA0F
f := 1.60714285714285720630e+00 // 45/28 = 0x3FF9B6DB6DB6DB6E
g := 3.57142857142857150787e-01 // 5/14 = 0x3FD6DB6DB6DB6DB7
smallest_normal := 2.22507385850720138309e-308 // 2**-1022 = 0x0010000000000000
if x == 0.0 || is_nan(x) || is_inf(x, 0) {
return x
}
mut sign := false
if x < 0 {
x = -x
sign = true
}
// rough cbrt to 5 bits
mut t := f64_from_bits(f64_bits(x) / u64(3 + (u64(b1) << 32)))
if x < smallest_normal {
// subnormal number
t = f64(u64(1) << 54) // set t= 2**54
t *= x
t = f64_from_bits(f64_bits(t) / u64(3 + (u64(b2) << 32)))
}
// new cbrt to 23 bits
mut r := t * t / x
mut s := c + r * t
t *= g + f / (s + e_ + d / s)
// chop to 22 bits, make larger than cbrt(x)
t = f64_from_bits(f64_bits(t) & (u64(0xffffffffc) << 28) + (u64(1) << 30))
// one step newton iteration to 53 bits with error less than 0.667ulps
s = t * t // t*t is exact
r = x / s
w := t + t
r = (r - t) / (w + r) // r-s is exact
t = t + t * r
// restore the sign bit
if sign {
t = -t
}
return t
}

View File

@ -27,7 +27,7 @@ pub fn (c Complex) str() string {
// Complex Modulus value
// mod() and abs() return the same
pub fn (c Complex) abs() f64 {
return C.hypot(c.re, c.im)
return math.hypot(c.re, c.im)
}
pub fn (c Complex) mod() f64 {

View File

@ -6,6 +6,8 @@ module math
pub const (
e = 2.71828182845904523536028747135266249775724709369995957496696763
pi = 3.14159265358979323846264338327950288419716939937510582097494459
pi_2 = pi / 2.0
pi_4 = pi / 4.0
phi = 1.61803398874989484820458683436563811772030917980576286213544862
tau = 6.28318530717958647692528676655900576839433879875021164194988918
sqrt2 = 1.41421356237309504880168872420969807856967187537694807317667974

View File

@ -0,0 +1,9 @@
module math
fn C.fmod(x f64, y f64) f64
// fmod returns the floating-point remainder of number / denom (rounded towards zero):
[inline]
pub fn fmod(x f64, y f64) f64 {
return C.fmod(x, y)
}

87
vlib/math/div.v 100644
View File

@ -0,0 +1,87 @@
module math
// Floating-point mod function.
// mod returns the floating-point remainder of x/y.
// The magnitude of the result is less than y and its
// sign agrees with that of x.
//
// special cases are:
// mod(±inf, y) = nan
// mod(nan, y) = nan
// mod(x, 0) = nan
// mod(x, ±inf) = x
// mod(x, nan) = nan
pub fn mod(x f64, y f64) f64 {
return fmod(x, y)
}
// fmod returns the floating-point remainder of number / denom (rounded towards zero)
pub fn fmod(x f64, y f64) f64 {
if y == 0 || is_inf(x, 0) || is_nan(x) || is_nan(y) {
return nan()
}
abs_y := abs(y)
abs_y_fr, abs_y_exp := frexp(abs_y)
mut r := x
if x < 0 {
r = -x
}
for r >= abs_y {
rfr, mut rexp := frexp(r)
if rfr < abs_y_fr {
rexp = rexp - 1
}
r = r - ldexp(abs_y, rexp - abs_y_exp)
}
if x < 0 {
r = -r
}
return r
}
// gcd calculates greatest common (positive) divisor (or zero if a and b are both zero).
pub fn gcd(a_ i64, b_ i64) i64 {
mut a := a_
mut b := b_
if a < 0 {
a = -a
}
if b < 0 {
b = -b
}
for b != 0 {
a %= b
if a == 0 {
return b
}
b %= a
}
return a
}
// egcd returns (gcd(a, b), x, y) such that |a*x + b*y| = gcd(a, b)
pub fn egcd(a i64, b i64) (i64, i64, i64) {
mut old_r, mut r := a, b
mut old_s, mut s := i64(1), i64(0)
mut old_t, mut t := i64(0), i64(1)
for r != 0 {
quot := old_r / r
old_r, r = r, old_r % r
old_s, s = s, old_s - quot * s
old_t, t = t, old_t - quot * t
}
return if old_r < 0 { -old_r } else { old_r }, old_s, old_t
}
// lcm calculates least common (non-negative) multiple.
pub fn lcm(a i64, b i64) i64 {
if a == 0 {
return a
}
res := a * (b / gcd(b, a))
if res < 0 {
return -res
}
return res
}

17
vlib/math/erf.c.v 100644
View File

@ -0,0 +1,17 @@
module math
fn C.erf(x f64) f64
fn C.erfc(x f64) f64
// erf computes the error function value
[inline]
pub fn erf(a f64) f64 {
return C.erf(a)
}
// erfc computes the complementary error function value
[inline]
pub fn erfc(a f64) f64 {
return C.erfc(a)
}

View File

@ -1,659 +1,327 @@
// Provides the [error](https://en.wikipedia.org/wiki/Error_function) and related functions
// based on https://github.com/unovor/frame/blob/master/statrs-0.10.0/src/function/erf.rs
//
// NOTE: This impl does not have the same precision as glibc impl of erf,erfc and others, we should fix this
// in the future.
module math
// Coefficients for erf_impl polynominal
/*
* x
* 2 |\
* erf(x) = --------- | exp(-t*t)dt
* sqrt(pi) \|
* 0
*
* erfc(x) = 1-erf(x)
* Note that
* erf(-x) = -erf(x)
* erfc(-x) = 2 - erfc(x)
*
* Method:
* 1. For |x| in [0, 0.84375]
* erf(x) = x + x*R(x**2)
* erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
* = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
* where R = P/Q where P is an odd poly of degree 8 and
* Q is an odd poly of degree 10.
* -57.90
* | R - (erf(x)-x)/x | <= 2
*
*
* Remark. The formula is derived by noting
* erf(x) = (2/sqrt(pi))*(x - x**3/3 + x**5/10 - x**7/42 + ....)
* and that
* 2/sqrt(pi) = 1.128379167095512573896158903121545171688
* is close to one. The interval is chosen because the fix
* point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
* near 0.6174), and by some experiment, 0.84375 is chosen to
* guarantee the error is less than one ulp for erf.
*
* 2. For |x| in [0.84375,1.25], let s_ = |x| - 1, and
* c = 0.84506291151 rounded to single (24 bits)
* erf(x) = sign(x) * (c + P1(s_)/Q1(s_))
* erfc(x) = (1-c) - P1(s_)/Q1(s_) if x > 0
* 1+(c+P1(s_)/Q1(s_)) if x < 0
* |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
* Remark: here we use the taylor series expansion at x=1.
* erf(1+s_) = erf(1) + s_*Poly(s_)
* = 0.845.. + P1(s_)/Q1(s_)
* That is, we use rational approximation to approximate
* erf(1+s_) - (c = (single)0.84506291151)
* Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
* where
* P1(s_) = degree 6 poly in s_
* Q1(s_) = degree 6 poly in s_
*
* 3. For x in [1.25,1/0.35(~2.857143)],
* erfc(x) = (1/x)*exp(-x*x-0.5625+R1/s1)
* erf(x) = 1 - erfc(x)
* where
* R1(z) = degree 7 poly in z, (z=1/x**2)
* s1(z) = degree 8 poly in z
*
* 4. For x in [1/0.35,28]
* erfc(x) = (1/x)*exp(-x*x-0.5625+R2/s2) if x > 0
* = 2.0 - (1/x)*exp(-x*x-0.5625+R2/s2) if -6<x<0
* = 2.0 - tiny (if x <= -6)
* erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else
* erf(x) = sign(x)*(1.0 - tiny)
* where
* R2(z) = degree 6 poly in z, (z=1/x**2)
* s2(z) = degree 7 poly in z
*
* Note1:
* To compute exp(-x*x-0.5625+R/s), let s_ be a single
* precision number and s_ := x; then
* -x*x = -s_*s_ + (s_-x)*(s_+x)
* exp(-x*x-0.5626+R/s) =
* exp(-s_*s_-0.5625)*exp((s_-x)*(s_+x)+R/s);
* Note2:
* Here 4 and 5 make use of the asymptotic series
* exp(-x*x)
* erfc(x) ~ ---------- * ( 1 + Poly(1/x**2) )
* x*sqrt(pi)
* We use rational approximation to approximate
* g(s_)=f(1/x**2) = log(erfc(x)*x) - x*x + 0.5625
* Here is the error bound for R1/s1 and R2/s2
* |R1/s1 - f(x)| < 2**(-62.57)
* |R2/s2 - f(x)| < 2**(-61.52)
*
* 5. For inf > x >= 28
* erf(x) = sign(x) *(1 - tiny) (raise inexact)
* erfc(x) = tiny*tiny (raise underflow) if x > 0
* = 2 - tiny if x<0
*
* 7. special case:
* erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
* erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
* erfc/erf(nan) is nan
*/
const (
// Polynomial coefficients for a numerator of `erf_impl`
// in the interval [1e-10, 0.5].
erf_impl_an = [0.00337916709551257388990745, -0.00073695653048167948530905,
-0.374732337392919607868241, 0.0817442448733587196071743, -0.0421089319936548595203468,
0.0070165709512095756344528, -0.00495091255982435110337458, 0.000871646599037922480317225]
// Polynomial coefficients for a denominator of `erf_impl`
// in the interval [1e-10, 0.5]
erf_impl_ad = [1.0, -0.218088218087924645390535, 0.412542972725442099083918,
-0.0841891147873106755410271, 0.0655338856400241519690695, -0.0120019604454941768171266,
0.00408165558926174048329689, -0.000615900721557769691924509]
// Polynomial coefficients for a numerator in `erf_impl`
// in the interval [0.5, 0.75].
erf_impl_bn = [-0.0361790390718262471360258, 0.292251883444882683221149,
0.281447041797604512774415, 0.125610208862766947294894, 0.0274135028268930549240776,
0.00250839672168065762786937,
]
// Polynomial coefficients for a denominator in `erf_impl`
// in the interval [0.5, 0.75].
erf_impl_bd = [1.0, 1.8545005897903486499845, 1.43575803037831418074962,
0.582827658753036572454135, 0.124810476932949746447682, 0.0113724176546353285778481]
// Polynomial coefficients for a numerator in `erf_impl`
// in the interval [0.75, 1.25].
erf_impl_cn = [
-0.0397876892611136856954425,
0.153165212467878293257683,
0.191260295600936245503129,
0.10276327061989304213645,
0.029637090615738836726027,
0.0046093486780275489468812,
0.000307607820348680180548455,
]
// Polynomial coefficients for a denominator in `erf_impl`
// in the interval [0.75, 1.25].
erf_impl_cd = [
1.0,
1.95520072987627704987886,
1.64762317199384860109595,
0.768238607022126250082483,
0.209793185936509782784315,
0.0319569316899913392596356,
0.00213363160895785378615014,
]
// Polynomial coefficients for a numerator in `erf_impl`
// in the interval [1.25, 2.25].
erf_impl_dn = [
-0.0300838560557949717328341,
0.0538578829844454508530552,
0.0726211541651914182692959,
0.0367628469888049348429018,
0.00964629015572527529605267,
0.00133453480075291076745275,
0.778087599782504251917881e-4,
]
// Polynomial coefficients for a denominator in `erf_impl`
// in the interval [1.25, 2.25].
erf_impl_dd = [
1.0,
1.75967098147167528287343,
1.32883571437961120556307,
0.552528596508757581287907,
0.133793056941332861912279,
0.0179509645176280768640766,
0.00104712440019937356634038,
-0.106640381820357337177643e-7,
]
// Polynomial coefficients for a numerator in `erf_impl`
// in the interval [2.25, 3.5].
erf_impl_en = [
-0.0117907570137227847827732,
0.014262132090538809896674,
0.0202234435902960820020765,
0.00930668299990432009042239,
0.00213357802422065994322516,
0.00025022987386460102395382,
0.120534912219588189822126e-4,
]
// Polynomial coefficients for a denominator in `erf_impl`
// in the interval [2.25, 3.5].
erf_impl_ed = [
1.0,
1.50376225203620482047419,
0.965397786204462896346934,
0.339265230476796681555511,
0.0689740649541569716897427,
0.00771060262491768307365526,
0.000371421101531069302990367,
]
// Polynomial coefficients for a numerator in `erf_impl`
// in the interval [3.5, 5.25].
erf_impl_fn = [
-0.00546954795538729307482955,
0.00404190278731707110245394,
0.0054963369553161170521356,
0.00212616472603945399437862,
0.000394984014495083900689956,
0.365565477064442377259271e-4,
0.135485897109932323253786e-5,
]
// Polynomial coefficients for a denominator in `erf_impl`
// in the interval [3.5, 5.25].
erf_impl_fd = [
1.0,
1.21019697773630784832251,
0.620914668221143886601045,
0.173038430661142762569515,
0.0276550813773432047594539,
0.00240625974424309709745382,
0.891811817251336577241006e-4,
-0.465528836283382684461025e-11,
]
// Polynomial coefficients for a numerator in `erf_impl`
// in the interval [5.25, 8].
erf_impl_gn = [
-0.00270722535905778347999196,
0.0013187563425029400461378,
0.00119925933261002333923989,
0.00027849619811344664248235,
0.267822988218331849989363e-4,
0.923043672315028197865066e-6,
]
// Polynomial coefficients for a denominator in `erf_impl`
// in the interval [5.25, 8].
erf_impl_gd = [
1.0,
0.814632808543141591118279,
0.268901665856299542168425,
0.0449877216103041118694989,
0.00381759663320248459168994,
0.000131571897888596914350697,
0.404815359675764138445257e-11,
]
// Polynomial coefficients for a numerator in `erf_impl`
// in the interval [8, 11.5].
erf_impl_hn = [
-0.00109946720691742196814323,
0.000406425442750422675169153,
0.000274499489416900707787024,
0.465293770646659383436343e-4,
0.320955425395767463401993e-5,
0.778286018145020892261936e-7,
]
// Polynomial coefficients for a denominator in `erf_impl`
// in the interval [8, 11.5].
erf_impl_hd = [
1.0,
0.588173710611846046373373,
0.139363331289409746077541,
0.0166329340417083678763028,
0.00100023921310234908642639,
0.24254837521587225125068e-4,
]
// Polynomial coefficients for a numerator in `erf_impl`
// in the interval [11.5, 17].
erf_impl_in = [
-0.00056907993601094962855594,
0.000169498540373762264416984,
0.518472354581100890120501e-4,
0.382819312231928859704678e-5,
0.824989931281894431781794e-7,
]
// Polynomial coefficients for a denominator in `erf_impl`
// in the interval [11.5, 17].
erf_impl_id = [
1.0,
0.339637250051139347430323,
0.043472647870310663055044,
0.00248549335224637114641629,
0.535633305337152900549536e-4,
-0.117490944405459578783846e-12,
]
// Polynomial coefficients for a numerator in `erf_impl`
// in the interval [17, 24].
erf_impl_jn = [
-0.000241313599483991337479091,
0.574224975202501512365975e-4,
0.115998962927383778460557e-4,
0.581762134402593739370875e-6,
0.853971555085673614607418e-8,
]
// Polynomial coefficients for a denominator in `erf_impl`
// in the interval [17, 24].
erf_impl_jd = [
1.0,
0.233044138299687841018015,
0.0204186940546440312625597,
0.000797185647564398289151125,
0.117019281670172327758019e-4,
]
// Polynomial coefficients for a numerator in `erf_impl`
// in the interval [24, 38].
erf_impl_kn = [
-0.000146674699277760365803642,
0.162666552112280519955647e-4,
0.269116248509165239294897e-5,
0.979584479468091935086972e-7,
0.101994647625723465722285e-8,
]
// Polynomial coefficients for a denominator in `erf_impl`
// in the interval [24, 38].
erf_impl_kd = [
1.0,
0.165907812944847226546036,
0.0103361716191505884359634,
0.000286593026373868366935721,
0.298401570840900340874568e-5,
]
// Polynomial coefficients for a numerator in `erf_impl`
// in the interval [38, 60].
erf_impl_ln = [
-0.583905797629771786720406e-4,
0.412510325105496173512992e-5,
0.431790922420250949096906e-6,
0.993365155590013193345569e-8,
0.653480510020104699270084e-10,
]
// Polynomial coefficients for a denominator in `erf_impl`
// in the interval [38, 60].
erf_impl_ld = [
1.0,
0.105077086072039915406159,
0.00414278428675475620830226,
0.726338754644523769144108e-4,
0.477818471047398785369849e-6,
]
// Polynomial coefficients for a numerator in `erf_impl`
// in the interval [60, 85].
erf_impl_mn = [
-0.196457797609229579459841e-4,
0.157243887666800692441195e-5,
0.543902511192700878690335e-7,
0.317472492369117710852685e-9,
]
// Polynomial coefficients for a denominator in `erf_impl`
// in the interval [60, 85].
erf_impl_md = [
1.0,
0.052803989240957632204885,
0.000926876069151753290378112,
0.541011723226630257077328e-5,
0.535093845803642394908747e-15,
]
// Polynomial coefficients for a numerator in `erf_impl`
// in the interval [85, 110].
erf_impl_nn = [
-0.789224703978722689089794e-5,
0.622088451660986955124162e-6,
0.145728445676882396797184e-7,
0.603715505542715364529243e-10,
]
// Polynomial coefficients for a denominator in `erf_impl`
// in the interval [85, 110].
erf_impl_nd = [
1.0,
0.0375328846356293715248719,
0.000467919535974625308126054,
0.193847039275845656900547e-5,
]
// **********************************************************
// ********** Coefficients for erf_inv_impl polynomial ******
// **********************************************************
// Polynomial coefficients for a numerator of `erf_inv_impl`
// in the interval [0, 0.5].
erf_inv_impl_an = [
-0.000508781949658280665617,
-0.00836874819741736770379,
0.0334806625409744615033,
-0.0126926147662974029034,
-0.0365637971411762664006,
0.0219878681111168899165,
0.00822687874676915743155,
-0.00538772965071242932965,
]
// Polynomial coefficients for a denominator of `erf_inv_impl`
// in the interval [0, 0.5].
erf_inv_impl_ad = [
1.0,
-0.970005043303290640362,
-1.56574558234175846809,
1.56221558398423026363,
0.662328840472002992063,
-0.71228902341542847553,
-0.0527396382340099713954,
0.0795283687341571680018,
-0.00233393759374190016776,
0.000886216390456424707504,
]
// Polynomial coefficients for a numerator of `erf_inv_impl`
// in the interval [0.5, 0.75].
erf_inv_impl_bn = [
-0.202433508355938759655,
0.105264680699391713268,
8.37050328343119927838,
17.6447298408374015486,
-18.8510648058714251895,
-44.6382324441786960818,
17.445385985570866523,
21.1294655448340526258,
-3.67192254707729348546,
]
// Polynomial coefficients for a denominator of `erf_inv_impl`
// in the interval [0.5, 0.75].
erf_inv_impl_bd = [
1.0,
6.24264124854247537712,
3.9713437953343869095,
-28.6608180499800029974,
-20.1432634680485188801,
48.5609213108739935468,
10.8268667355460159008,
-22.6436933413139721736,
1.72114765761200282724,
]
// Polynomial coefficients for a numerator of `erf_inv_impl`
// in the interval [0.75, 1] with x less than 3.
erf_inv_impl_cn = [
-0.131102781679951906451,
-0.163794047193317060787,
0.117030156341995252019,
0.387079738972604337464,
0.337785538912035898924,
0.142869534408157156766,
0.0290157910005329060432,
0.00214558995388805277169,
-0.679465575181126350155e-6,
0.285225331782217055858e-7,
-0.681149956853776992068e-9,
]
// Polynomial coefficients for a denominator of `erf_inv_impl`
// in the interval [0.75, 1] with x less than 3.
erf_inv_impl_cd = [
1.0,
3.46625407242567245975,
5.38168345707006855425,
4.77846592945843778382,
2.59301921623620271374,
0.848854343457902036425,
0.152264338295331783612,
0.01105924229346489121,
]
// Polynomial coefficients for a numerator of `erf_inv_impl`
// in the interval [0.75, 1] with x between 3 and 6.
erf_inv_impl_dn = [
-0.0350353787183177984712,
-0.00222426529213447927281,
0.0185573306514231072324,
0.00950804701325919603619,
0.00187123492819559223345,
0.000157544617424960554631,
0.460469890584317994083e-5,
-0.230404776911882601748e-9,
0.266339227425782031962e-11,
]
// Polynomial coefficients for a denominator of `erf_inv_impl`
// in the interval [0.75, 1] with x between 3 and 6.
erf_inv_impl_dd = [
1.0,
1.3653349817554063097,
0.762059164553623404043,
0.220091105764131249824,
0.0341589143670947727934,
0.00263861676657015992959,
0.764675292302794483503e-4,
]
// Polynomial coefficients for a numerator of `erf_inv_impl`
// in the interval [0.75, 1] with x between 6 and 18.
erf_inv_impl_en = [
-0.0167431005076633737133,
-0.00112951438745580278863,
0.00105628862152492910091,
0.000209386317487588078668,
0.149624783758342370182e-4,
0.449696789927706453732e-6,
0.462596163522878599135e-8,
-0.281128735628831791805e-13,
0.99055709973310326855e-16,
]
// Polynomial coefficients for a denominator of `erf_inv_impl`
// in the interval [0.75, 1] with x between 6 and 18.
erf_inv_impl_ed = [
1.0,
0.591429344886417493481,
0.138151865749083321638,
0.0160746087093676504695,
0.000964011807005165528527,
0.275335474764726041141e-4,
0.282243172016108031869e-6,
]
// Polynomial coefficients for a numerator of `erf_inv_impl`
// in the interval [0.75, 1] with x between 18 and 44.
erf_inv_impl_fn = [
-0.0024978212791898131227,
-0.779190719229053954292e-5,
0.254723037413027451751e-4,
0.162397777342510920873e-5,
0.396341011304801168516e-7,
0.411632831190944208473e-9,
0.145596286718675035587e-11,
-0.116765012397184275695e-17,
]
// Polynomial coefficients for a denominator of `erf_inv_impl`
// in the interval [0.75, 1] with x between 18 and 44.
erf_inv_impl_fd = [
1.0,
0.207123112214422517181,
0.0169410838120975906478,
0.000690538265622684595676,
0.145007359818232637924e-4,
0.144437756628144157666e-6,
0.509761276599778486139e-9,
]
// Polynomial coefficients for a numerator of `erf_inv_impl`
// in the interval [0.75, 1] with x greater than 44.
erf_inv_impl_gn = [
-0.000539042911019078575891,
-0.28398759004727721098e-6,
0.899465114892291446442e-6,
0.229345859265920864296e-7,
0.225561444863500149219e-9,
0.947846627503022684216e-12,
0.135880130108924861008e-14,
-0.348890393399948882918e-21,
]
// Polynomial coefficients for a denominator of `erf_inv_impl`
// in the interval [0.75, 1] with x greater than 44.
erf_inv_impl_gd = [
1.0,
0.0845746234001899436914,
0.00282092984726264681981,
0.468292921940894236786e-4,
0.399968812193862100054e-6,
0.161809290887904476097e-8,
0.231558608310259605225e-11,
]
erx = 8.45062911510467529297e-01 // 0x3FEB0AC160000000
// Coefficients for approximation to erf in [0, 0.84375]
efx = 1.28379167095512586316e-01 // 0x3FC06EBA8214DB69
efx8 = 1.02703333676410069053e+00 // 0x3FF06EBA8214DB69
pp0 = 1.28379167095512558561e-01 // 0x3FC06EBA8214DB68
pp1 = -3.25042107247001499370e-01 // 0xBFD4CD7D691CB913
pp2 = -2.84817495755985104766e-02 // 0xBF9D2A51DBD7194F
pp3 = -5.77027029648944159157e-03 // 0xBF77A291236668E4
pp4 = -2.37630166566501626084e-05 // 0xBEF8EAD6120016AC
qq1 = 3.97917223959155352819e-01 // 0x3FD97779CDDADC09
qq2 = 6.50222499887672944485e-02 // 0x3FB0A54C5536CEBA
qq3 = 5.08130628187576562776e-03 // 0x3F74D022C4D36B0F
qq4 = 1.32494738004321644526e-04 // 0x3F215DC9221C1A10
qq5 = -3.96022827877536812320e-06 // 0xBED09C4342A26120
// Coefficients for approximation to erf in [0.84375, 1.25]
pa0 = -2.36211856075265944077e-03 // 0xBF6359B8BEF77538
pa1 = 4.14856118683748331666e-01 // 0x3FDA8D00AD92B34D
pa2 = -3.72207876035701323847e-01 // 0xBFD7D240FBB8C3F1
pa3 = 3.18346619901161753674e-01 // 0x3FD45FCA805120E4
pa4 = -1.10894694282396677476e-01 // 0xBFBC63983D3E28EC
pa5 = 3.54783043256182359371e-02 // 0x3FA22A36599795EB
pa6 = -2.16637559486879084300e-03 // 0xBF61BF380A96073F
qa1 = 1.06420880400844228286e-01 // 0x3FBB3E6618EEE323
qa2 = 5.40397917702171048937e-01 // 0x3FE14AF092EB6F33
qa3 = 7.18286544141962662868e-02 // 0x3FB2635CD99FE9A7
qa4 = 1.26171219808761642112e-01 // 0x3FC02660E763351F
qa5 = 1.36370839120290507362e-02 // 0x3F8BEDC26B51DD1C
qa6 = 1.19844998467991074170e-02 // 0x3F888B545735151D
// Coefficients for approximation to erfc in [1.25, 1/0.35]
ra0 = -9.86494403484714822705e-03 // 0xBF843412600D6435
ra1 = -6.93858572707181764372e-01 // 0xBFE63416E4BA7360
ra2 = -1.05586262253232909814e+01 // 0xC0251E0441B0E726
ra3 = -6.23753324503260060396e+01 // 0xC04F300AE4CBA38D
ra4 = -1.62396669462573470355e+02 // 0xC0644CB184282266
ra5 = -1.84605092906711035994e+02 // 0xC067135CEBCCABB2
ra6 = -8.12874355063065934246e+01 // 0xC054526557E4D2F2
ra7 = -9.81432934416914548592e+00 // 0xC023A0EFC69AC25C
sa1 = 1.96512716674392571292e+01 // 0x4033A6B9BD707687
sa2 = 1.37657754143519042600e+02 // 0x4061350C526AE721
sa3 = 4.34565877475229228821e+02 // 0x407B290DD58A1A71
sa4 = 6.45387271733267880336e+02 // 0x40842B1921EC2868
sa5 = 4.29008140027567833386e+02 // 0x407AD02157700314
sa6 = 1.08635005541779435134e+02 // 0x405B28A3EE48AE2C
sa7 = 6.57024977031928170135e+00 // 0x401A47EF8E484A93
sa8 = -6.04244152148580987438e-02 // 0xBFAEEFF2EE749A62
// Coefficients for approximation to erfc in [1/.35, 28]
rb0 = -9.86494292470009928597e-03 // 0xBF84341239E86F4A
rb1 = -7.99283237680523006574e-01 // 0xBFE993BA70C285DE
rb2 = -1.77579549177547519889e+01 // 0xC031C209555F995A
rb3 = -1.60636384855821916062e+02 // 0xC064145D43C5ED98
rb4 = -6.37566443368389627722e+02 // 0xC083EC881375F228
rb5 = -1.02509513161107724954e+03 // 0xC09004616A2E5992
rb6 = -4.83519191608651397019e+02 // 0xC07E384E9BDC383F
sb1 = 3.03380607434824582924e+01 // 0x403E568B261D5190
sb2 = 3.25792512996573918826e+02 // 0x40745CAE221B9F0A
sb3 = 1.53672958608443695994e+03 // 0x409802EB189D5118
sb4 = 3.19985821950859553908e+03 // 0x40A8FFB7688C246A
sb5 = 2.55305040643316442583e+03 // 0x40A3F219CEDF3BE6
sb6 = 4.74528541206955367215e+02 // 0x407DA874E79FE763
sb7 = -2.24409524465858183362e+01 // 0xC03670E242712D62
)
fn erf_inv_impl(p f64, q f64, s f64) f64 {
mut result := 0.0
if p <= 0.5 {
y := 0.0891314744949340820313
g := p * (p + 10.0)
r := polynomial(p, math.erf_inv_impl_an) / polynomial(p, math.erf_inv_impl_ad)
result = g * y + g * r
} else if q >= 0.25 {
y := 2.249481201171875
g := sqrt(-2.0 * log(q))
xs := q - 0.25
r := polynomial(xs, math.erf_inv_impl_bn) / polynomial(xs, math.erf_inv_impl_bd)
result = g / (y + r)
} else {
x := sqrt(-log(q))
if x < 3.0 {
y := 0.807220458984375
xs := x - 1.125
r := polynomial(xs, math.erf_inv_impl_cn) / polynomial(xs, math.erf_inv_impl_cd)
result = y * x + r * x
} else if x < 6.0 {
y := 0.93995571136474609375
xs := x - 3.0
r := polynomial(xs, math.erf_inv_impl_dn) / polynomial(xs, math.erf_inv_impl_dd)
result = y * x + r * x
} else if x < 18.0 {
y := 0.98362827301025390625
xs := x - 6.0
r := polynomial(xs, math.erf_inv_impl_en) / polynomial(xs, math.erf_inv_impl_ed)
result = y * x + r * x
} else if x < 44.0 {
y := 0.99714565277099609375
xs := x - 18.0
r := polynomial(xs, math.erf_inv_impl_fn) / polynomial(xs, math.erf_inv_impl_fd)
result = y * x + r * x
} else {
y := 0.99941349029541015625
xs := x - 44.0
r := polynomial(xs, math.erf_inv_impl_gn) / polynomial(xs, math.erf_inv_impl_gd)
result = y * x + r * x
}
}
return s * result
}
fn erf_impl(z f64, inv bool) f64 {
if z < 0.0 {
if !inv {
return -erf_impl(-z, false)
}
if z < -0.5 {
return 2.0 - erf_impl(-z, true)
}
return 1.0 + erf_impl(-z, false)
}
mut result := 0.0
if z < 0.5 {
if z < 1e-10 {
result = z * 1.125 + z * 0.003379167095512573896158903121545171688
} else {
result = z * 1.125 +
z * polynomial(z, math.erf_impl_an) / polynomial(z, math.erf_impl_ad)
}
} else if z < 110.0 {
mut r := 0.0
mut b := 0.0
if z < 0.75 {
r = polynomial(z - 0.5, math.erf_impl_bn) / polynomial(z - 0.5, math.erf_impl_bd)
b = 0.3440242112
} else if z < 1.25 {
r = polynomial(z - 0.75, math.erf_impl_cn) / polynomial(z - 0.75, math.erf_impl_cd)
b = 0.419990927
} else if z < 2.25 {
r = polynomial(z - 1.25, math.erf_impl_dn) / polynomial(z - 1.25, math.erf_impl_dd)
b = 0.4898625016
} else if z < 3.5 {
r = polynomial(z - 2.25, math.erf_impl_en) / polynomial(z - 2.25, math.erf_impl_ed)
b = 0.5317370892
} else if z < 5.25 {
r = polynomial(z - 3.5, math.erf_impl_fn) / polynomial(z - 3.5, math.erf_impl_fd)
b = 0.5489973426
} else if z < 8.0 {
r = polynomial(z - 5.25, math.erf_impl_gn) / polynomial(z - 5.25, math.erf_impl_gd)
b = 0.5571740866
} else if z < 11.5 {
r = polynomial(z - 8.0, math.erf_impl_hn) / polynomial(z - 8.0, math.erf_impl_hd)
b = 0.5609807968
} else if z < 17.0 {
r = polynomial(z - 11.5, math.erf_impl_in) / polynomial(z - 11.5, math.erf_impl_id)
b = 0.5626493692
} else if z < 24.0 {
r = polynomial(z - 17.0, math.erf_impl_jn) / polynomial(z - 17.0, math.erf_impl_jd)
b = 0.5634598136
} else if z < 38.0 {
r = polynomial(z - 24.0, math.erf_impl_kn) / polynomial(z - 24.0, math.erf_impl_kd)
b = 0.5638477802
} else if z < 60.0 {
r = polynomial(z - 38.0, math.erf_impl_ln) / polynomial(z - 38.0, math.erf_impl_ld)
b = 0.5640528202
} else if z < 85.0 {
r = polynomial(z - 60.0, math.erf_impl_mn) / polynomial(z - 60.0, math.erf_impl_md)
b = 0.5641309023
} else {
r = polynomial(z - 85.0, math.erf_impl_nn) / polynomial(z - 85.0, math.erf_impl_nd)
b = 0.5641584396
}
g := exp(-z * z) / z
result = g * b + g * r
} else {
result = 0.0
}
if inv && z >= 0.5 {
return result
} else if z >= 0.5 || inv {
return 1.0 - result
} else {
return result
}
}
/// 'erf' calculates the error function at `x`.
pub fn erf(x f64) f64 {
// erf returns the error function of x.
//
// special cases are:
// erf(+inf) = 1
// erf(-inf) = -1
// erf(nan) = nan
pub fn erf(a f64) f64 {
mut x := a
very_tiny := 2.848094538889218e-306 // 0x0080000000000000
small := 1.0 / f64(u64(1) << 28) // 2**-28
if is_nan(x) {
return nan()
} else if is_inf(x, 1) {
}
if is_inf(x, 1) {
return 1.0
} else if is_inf(x, -1) {
return -1.0
} else if x == 0.0 {
return 0.0
} else {
return erf_impl(x, false)
}
if is_inf(x, -1) {
return f64(-1)
}
mut sign := false
if x < 0 {
x = -x
sign = true
}
if x < 0.84375 { // |x| < 0.84375
mut temp := 0.0
if x < small { // |x| < 2**-28
if x < very_tiny {
temp = 0.125 * (8.0 * x + math.efx8 * x) // avoid underflow
} else {
temp = x + math.efx * x
}
} else {
z := x * x
r := math.pp0 + z * (math.pp1 + z * (math.pp2 + z * (math.pp3 + z * math.pp4)))
s_ := 1.0 + z * (math.qq1 + z * (math.qq2 + z * (math.qq3 + z * (math.qq4 +
z * math.qq5))))
y := r / s_
temp = x + x * y
}
if sign {
return -temp
}
return temp
}
if x < 1.25 { // 0.84375 <= |x| < 1.25
s_ := x - 1
p := math.pa0 + s_ * (math.pa1 + s_ * (math.pa2 + s_ * (math.pa3 + s_ * (math.pa4 +
s_ * (math.pa5 + s_ * math.pa6)))))
q := 1.0 + s_ * (math.qa1 + s_ * (math.qa2 + s_ * (math.qa3 + s_ * (math.qa4 +
s_ * (math.qa5 + s_ * math.qa6)))))
if sign {
return -math.erx - p / q
}
return math.erx + p / q
}
if x >= 6 { // inf > |x| >= 6
if sign {
return -1
}
return 1.0
}
s_ := 1.0 / (x * x)
mut r := 0.0
mut s := 0.0
if x < 1.0 / 0.35 { // |x| < 1 / 0.35 ~ 2.857143
r = math.ra0 + s_ * (math.ra1 + s_ * (math.ra2 + s_ * (math.ra3 + s_ * (math.ra4 +
s_ * (math.ra5 + s_ * (math.ra6 + s_ * math.ra7))))))
s = 1.0 + s_ * (math.sa1 + s_ * (math.sa2 + s_ * (math.sa3 + s_ * (math.sa4 +
s_ * (math.sa5 + s_ * (math.sa6 + s_ * (math.sa7 + s_ * math.sa8)))))))
} else { // |x| >= 1 / 0.35 ~ 2.857143
r = math.rb0 + s_ * (math.rb1 + s_ * (math.rb2 + s_ * (math.rb3 + s_ * (math.rb4 +
s_ * (math.rb5 + s_ * math.rb6)))))
s = 1.0 + s_ * (math.sb1 + s_ * (math.sb2 + s_ * (math.sb3 + s_ * (math.sb4 +
s_ * (math.sb5 + s_ * (math.sb6 + s_ * math.sb7))))))
}
z := f64_from_bits(f64_bits(x) & 0xffffffff00000000) // pseudo-single (20-bit) precision x
r_ := exp(-z * z - 0.5625) * exp((z - x) * (z + x) + r / s)
if sign {
return r_ / x - 1.0
}
return 1.0 - r_ / x
}
// `erf_inv` calculates the inverse error function at `x`.
pub fn erf_inv(x f64) f64 {
if x == 0 {
return 0.0
} else if x >= 1.0 {
return inf(1)
} else if x <= -1.0 {
return inf(-1)
} else if x < 0.0 {
return erf_inv_impl(-x, 1.0 + x, -1.0)
} else {
return erf_inv_impl(x, 1.0 - x, 1.0)
}
}
// `erfc` calculates the complementary error function at `x`.
pub fn erfc(x f64) f64 {
// erfc returns the complementary error function of x.
//
// special cases are:
// erfc(+inf) = 0
// erfc(-inf) = 2
// erfc(nan) = nan
pub fn erfc(a f64) f64 {
mut x := a
tiny := 1.0 / f64(u64(1) << 56) // 2**-56
// special cases
if is_nan(x) {
return nan()
} else if is_inf(x, 1) {
}
if is_inf(x, 1) {
return 0.0
} else if is_inf(x, -1) {
}
if is_inf(x, -1) {
return 2.0
} else {
return erf_impl(x, true)
}
}
// `erfc_inv` calculates the complementary inverse error function at `x`.
pub fn erfc_inv(x f64) f64 {
if x <= 0.0 {
return inf(1)
} else if x >= 2.0 {
return inf(-1)
} else if is_inf(x, -1) {
return erf_inv_impl(-1.0 + x, 2.0 - x, -1.0)
} else {
return erf_inv_impl(1.0 - x, x, 1.0)
mut sign := false
if x < 0 {
x = -x
sign = true
}
if x < 0.84375 { // |x| < 0.84375
mut temp := 0.0
if x < tiny { // |x| < 2**-56
temp = x
} else {
z := x * x
r := math.pp0 + z * (math.pp1 + z * (math.pp2 + z * (math.pp3 + z * math.pp4)))
s_ := 1.0 + z * (math.qq1 + z * (math.qq2 + z * (math.qq3 + z * (math.qq4 +
z * math.qq5))))
y := r / s_
if x < 0.25 { // |x| < 1.0/4
temp = x + x * y
} else {
temp = 0.5 + (x * y + (x - 0.5))
}
}
if sign {
return 1.0 + temp
}
return 1.0 - temp
}
if x < 1.25 { // 0.84375 <= |x| < 1.25
s_ := x - 1
p := math.pa0 + s_ * (math.pa1 + s_ * (math.pa2 + s_ * (math.pa3 + s_ * (math.pa4 +
s_ * (math.pa5 + s_ * math.pa6)))))
q := 1.0 + s_ * (math.qa1 + s_ * (math.qa2 + s_ * (math.qa3 + s_ * (math.qa4 +
s_ * (math.qa5 + s_ * math.qa6)))))
if sign {
return 1.0 + math.erx + p / q
}
return 1.0 - math.erx - p / q
}
if x < 28 { // |x| < 28
s_ := 1.0 / (x * x)
mut r := 0.0
mut s := 0.0
if x < 1.0 / 0.35 { // |x| < 1 / 0.35 ~ 2.857143
r = math.ra0 + s_ * (math.ra1 + s_ * (math.ra2 + s_ * (math.ra3 + s_ * (math.ra4 +
s_ * (math.ra5 + s_ * (math.ra6 + s_ * math.ra7))))))
s = 1.0 + s_ * (math.sa1 + s_ * (math.sa2 + s_ * (math.sa3 + s_ * (math.sa4 +
s_ * (math.sa5 + s_ * (math.sa6 + s_ * (math.sa7 + s_ * math.sa8)))))))
} else { // |x| >= 1 / 0.35 ~ 2.857143
if sign && x > 6 {
return 2.0 // x < -6
}
r = math.rb0 + s_ * (math.rb1 + s_ * (math.rb2 + s_ * (math.rb3 + s_ * (math.rb4 +
s_ * (math.rb5 + s_ * math.rb6)))))
s = 1.0 + s_ * (math.sb1 + s_ * (math.sb2 + s_ * (math.sb3 + s_ * (math.sb4 +
s_ * (math.sb5 + s_ * (math.sb6 + s_ * math.sb7))))))
}
z := f64_from_bits(f64_bits(x) & 0xffffffff00000000) // pseudo-single (20-bit) precision x
r_ := exp(-z * z - 0.5625) * exp((z - x) * (z + x) + r / s)
if sign {
return 2.0 - r_ / x
}
return r_ / x
}
if sign {
return 2.0
}
return 0.0
}

View File

@ -1,45 +1,29 @@
import math
fn almost_eq(a f64, b f64, acc f64) bool {
if math.is_inf(a, 1) || math.is_inf(a, -1) || math.is_inf(b, 1) || math.is_inf(b, -1) {
return a == b
}
if math.is_nan(a) || math.is_nan(b) {
return false
}
return math.abs(a - b) < acc
}
module math
fn test_erf() {
assert math.is_nan(math.erf(math.nan()))
assert almost_eq(math.erf(-1.0), -0.8427007888650501, 1e-11)
assert math.erf(0.0) == 0.0
assert math.erf(1e-15) == 0.0000000000000011283791670955126615773132947717431253912942469337536
assert math.erf(0.1) == 0.11246291601917208
assert math.erf(0.3) == 0.32862677677789676
assert almost_eq(math.erf(0.5), 0.5204998778130465376827466538919645287364515757579637,
assert is_nan(erf(nan()))
assert tolerance(erf(-1.0), -0.8427007888650501, 1e-8)
assert tolerance(erf(0.0), 0.0, 1e-11)
assert tolerance(erf(1e-15), 0.0000000000000011283791670955126615773132947717431253912942469337536,
1e-11)
assert tolerance(erf(0.1), 0.11246291601917208, 1e-11)
assert tolerance(erf(0.3), 0.32862677677789676, 1e-7)
assert tolerance(erf(0.5), 0.5204998778130465376827466538919645287364515757579637,
1e-9)
assert math.erf(1.0) == 0.8427007888650501
assert math.erf(1.5) == 0.966105146259005
assert math.erf(6.0) == 0.99999999999999997848026328750108688340664960081261537
assert math.erf(5.0) == 0.99999999999846254020557196514981165651461662110988195
assert math.erf(4.0) == 0.999999984582742
assert math.erf(math.inf(1)) == 1.0
assert math.erf(math.inf(-1)) == -1.0
assert tolerance(erf(1.0), 0.8427007888650501, 1e-8)
assert tolerance(erf(1.5), 0.966105146259005, 1e-9)
assert tolerance(erf(6.0), 0.99999999999999997848026328750108688340664960081261537,
1e-12)
assert tolerance(erf(5.0), 0.99999999999846254020557196514981165651461662110988195,
1e-12)
assert tolerance(erf(4.0), 0.999999984582742, 1e-12)
assert tolerance(erf(inf(1)), 1.0, 1e-12)
assert tolerance(erf(inf(-1)), -1.0, 1e-12)
}
fn test_erfc() {
assert almost_eq(math.erfc(-1.0), 1.84270078886505, 1e-11)
assert math.erfc(0.0) == 1.0
assert math.erfc(0.1) == 0.8875370839808279
assert math.erfc(0.2) == 0.7772974103342554
}
fn test_erfc_inv() {
assert math.erfc_inv(0.0) == math.inf(1)
assert math.erfc_inv(1e-100) == 15.060286697120752
assert math.erfc_inv(1.0) == 0.0
assert math.erfc_inv(0.5) == 0.47660913088024937
assert tolerance(erfc(-1.0), 1.84270078886505, 1e-8)
assert tolerance(erfc(0.0), 1.0, 1e-11)
assert tolerance(erfc(0.1), 0.8875370839808279, 1e-11)
assert tolerance(erfc(0.2), 0.7772974103342554, 1e-9)
}

View File

@ -1,18 +0,0 @@
module math
// Provides functions that don't have a numerical solution and must
// be solved computationally (e.g. evaluation of a polynomial)
pub fn polynomial(z f64, coeff []f64) f64 {
n := coeff.len
if n == 0 {
return 0.0
}
mut sum := coeff[n - 1]
for i := n - 1; i >= 0; i-- {
sum *= z
sum += coeff[i]
}
return sum
}

17
vlib/math/exp.c.v 100644
View File

@ -0,0 +1,17 @@
module math
fn C.exp(x f64) f64
fn C.exp2(x f64) f64
// exp calculates exponent of the number (math.pow(math.E, x)).
[inline]
pub fn exp(x f64) f64 {
return C.exp(x)
}
// exp2 returns the base-2 exponential function of a (math.pow(2, x)).
[inline]
pub fn exp2(x f64) f64 {
return C.exp2(x)
}

12
vlib/math/exp.js.v 100644
View File

@ -0,0 +1,12 @@
module math
fn JS.Math.exp(x f64) f64
// exp calculates exponent of the number (math.pow(math.E, x)).
[inline]
pub fn exp(x f64) f64 {
mut res := 0.0
#res.val = Math.exp(x)
return res
}

214
vlib/math/exp.v 100644
View File

@ -0,0 +1,214 @@
module math
import math.internal
const (
f64_max_exp = f64(1024)
f64_min_exp = f64(-1021)
threshold = 7.09782712893383973096e+02 // 0x40862E42FEFA39EF
ln2_x56 = 3.88162421113569373274e+01 // 0x4043687a9f1af2b1
ln2_halfx3 = 1.03972077083991796413e+00 // 0x3ff0a2b23f3bab73
ln2_half = 3.46573590279972654709e-01 // 0x3fd62e42fefa39ef
ln2hi = 6.93147180369123816490e-01 // 0x3fe62e42fee00000
ln2lo = 1.90821492927058770002e-10 // 0x3dea39ef35793c76
inv_ln2 = 1.44269504088896338700e+00 // 0x3ff71547652b82fe
// scaled coefficients related to expm1
expm1_q1 = -3.33333333333331316428e-02 // 0xBFA11111111110F4
expm1_q2 = 1.58730158725481460165e-03 // 0x3F5A01A019FE5585
expm1_q3 = -7.93650757867487942473e-05 // 0xBF14CE199EAADBB7
expm1_q4 = 4.00821782732936239552e-06 // 0x3ED0CFCA86E65239
expm1_q5 = -2.01099218183624371326e-07 // 0xBE8AFDB76E09C32D
)
// exp returns e**x, the base-e exponential of x.
//
// special cases are:
// exp(+inf) = +inf
// exp(nan) = nan
// Very large values overflow to 0 or +inf.
// Very small values underflow to 1.
pub fn exp(x f64) f64 {
log2e := 1.44269504088896338700e+00
overflow := 7.09782712893383973096e+02
underflow := -7.45133219101941108420e+02
near_zero := 1.0 / (1 << 28) // 2**-28
// special cases
if is_nan(x) || is_inf(x, 1) {
return x
}
if is_inf(x, -1) {
return 0.0
}
if x > overflow {
return inf(1)
}
if x < underflow {
return 0.0
}
if -near_zero < x && x < near_zero {
return 1.0 + x
}
// reduce; computed as r = hi - lo for extra precision.
mut k := 0
if x < 0 {
k = int(log2e * x - 0.5)
}
if x > 0 {
k = int(log2e * x + 0.5)
}
hi := x - f64(k) * math.ln2hi
lo := f64(k) * math.ln2lo
// compute
return expmulti(hi, lo, k)
}
// exp2 returns 2**x, the base-2 exponential of x.
//
// special cases are the same as exp.
pub fn exp2(x f64) f64 {
overflow := 1.0239999999999999e+03
underflow := -1.0740e+03
if is_nan(x) || is_inf(x, 1) {
return x
}
if is_inf(x, -1) {
return 0
}
if x > overflow {
return inf(1)
}
if x < underflow {
return 0
}
// argument reduction; x = r×lg(e) + k with |r| ≤ ln(2)/2.
// computed as r = hi - lo for extra precision.
mut k := 0
if x > 0 {
k = int(x + 0.5)
}
if x < 0 {
k = int(x - 0.5)
}
mut t := x - f64(k)
hi := t * math.ln2hi
lo := -t * math.ln2lo
// compute
return expmulti(hi, lo, k)
}
pub fn ldexp(x f64, e int) f64 {
if x == 0.0 {
return x
} else {
mut y, ex := frexp(x)
mut e2 := f64(e + ex)
if e2 >= math.f64_max_exp {
y *= pow(2.0, e2 - math.f64_max_exp + 1.0)
e2 = math.f64_max_exp - 1.0
} else if e2 <= math.f64_min_exp {
y *= pow(2.0, e2 - math.f64_min_exp - 1.0)
e2 = math.f64_min_exp + 1.0
}
return y * pow(2.0, e2)
}
}
// frexp breaks f into a normalized fraction
// and an integral power of two.
// It returns frac and exp satisfying f == frac × 2**exp,
// with the absolute value of frac in the interval [½, 1).
//
// special cases are:
// frexp(±0) = ±0, 0
// frexp(±inf) = ±inf, 0
// frexp(nan) = nan, 0
// pub fn frexp(f f64) (f64, int) {
// // special cases
// if f == 0.0 {
// return f, 0 // correctly return -0
// }
// if is_inf(f, 0) || is_nan(f) {
// return f, 0
// }
// f_norm, mut exp := normalize(f)
// mut x := f64_bits(f_norm)
// exp += int((x>>shift)&mask) - bias + 1
// x &= ~(mask << shift)
// x |= (-1 + bias) << shift
// return f64_from_bits(x), exp
pub fn frexp(x f64) (f64, int) {
if x == 0.0 {
return 0.0, 0
} else if !is_finite(x) {
return x, 0
} else if abs(x) >= 0.5 && abs(x) < 1 { // Handle the common case
return x, 0
} else {
ex := ceil(log(abs(x)) / ln2)
mut ei := int(ex) // Prevent underflow and overflow of 2**(-ei)
if ei < int(math.f64_min_exp) {
ei = int(math.f64_min_exp)
}
if ei > -int(math.f64_min_exp) {
ei = -int(math.f64_min_exp)
}
mut f := x * pow(2.0, -ei)
if !is_finite(f) { // This should not happen
return f, 0
}
for abs(f) >= 1.0 {
ei++
f /= 2.0
}
for abs(f) > 0 && abs(f) < 0.5 {
ei--
f *= 2.0
}
return f, ei
}
}
// special cases are:
// expm1(+inf) = +inf
// expm1(-inf) = -1
// expm1(nan) = nan
pub fn expm1(x f64) f64 {
if is_inf(x, 1) || is_nan(x) {
return x
}
if is_inf(x, -1) {
return f64(-1)
}
// FIXME: this should be improved
if abs(x) < ln2 { // Compute the taylor series S = x + (1/2!) x^2 + (1/3!) x^3 + ...
mut i := 1.0
mut sum := x
mut term := x / 1.0
i++
term *= x / f64(i)
sum += term
for abs(term) > abs(sum) * internal.f64_epsilon {
i++
term *= x / f64(i)
sum += term
}
return sum
} else {
return exp(x) - 1
}
}
// exp1 returns e**r × 2**k where r = hi - lo and |r| ≤ ln(2)/2.
fn expmulti(hi f64, lo f64, k int) f64 {
exp_p1 := 1.66666666666666657415e-01 // 0x3FC55555; 0x55555555
exp_p2 := -2.77777777770155933842e-03 // 0xBF66C16C; 0x16BEBD93
exp_p3 := 6.61375632143793436117e-05 // 0x3F11566A; 0xAF25DE2C
exp_p4 := -1.65339022054652515390e-06 // 0xBEBBBD41; 0xC5D26BF1
exp_p5 := 4.13813679705723846039e-08 // 0x3E663769; 0x72BEA4D0
r := hi - lo
t := r * r
c := r - t * (exp_p1 + t * (exp_p2 + t * (exp_p3 + t * (exp_p4 + t * exp_p5))))
y := 1 - ((lo - (r * c) / (2 - c)) - hi)
// TODO(rsc): make sure ldexp can handle boundary k
return ldexp(y, k)
}

View File

@ -1,48 +1,31 @@
// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
// Module created by Ulises Jeremias Cornejo Fandos based on
// the definitions provided in https://scientificc.github.io/cmathl/
module factorial
import math
module math
// factorial calculates the factorial of the provided value.
pub fn factorial(n f64) f64 {
// For a large postive argument (n >= FACTORIALS.len) return max_f64
// For a large postive argument (n >= factorials_table.len) return max_f64
if n >= factorials_table.len {
return math.max_f64
return max_f64
}
// Otherwise return n!.
if n == f64(i64(n)) && n >= 0.0 {
return factorials_table[i64(n)]
}
return math.gamma(n + 1.0)
return gamma(n + 1.0)
}
// log_factorial calculates the log-factorial of the provided value.
pub fn log_factorial(n f64) f64 {
// For a large postive argument (n < 0) return max_f64
if n < 0 {
return -math.max_f64
return -max_f64
}
// If n < N then return ln(n!).
if n != f64(i64(n)) {
return math.log_gamma(n + 1)
return log_gamma(n + 1)
} else if n < log_factorials_table.len {
return log_factorials_table[i64(n)]
}
// Otherwise return asymptotic expansion of ln(n!).
return log_factorial_asymptotic_expansion(int(n))
}
@ -51,30 +34,22 @@ fn log_factorial_asymptotic_expansion(n int) f64 {
mut term := []f64{}
xx := f64((n + 1) * (n + 1))
mut xj := f64(n + 1)
log_factorial := log_sqrt_2pi - xj + (xj - 0.5) * math.log(xj)
log_factorial := log_sqrt_2pi - xj + (xj - 0.5) * log(xj)
mut i := 0
for i = 0; i < m; i++ {
term << b_numbers[i] / xj
term << bernoulli[i] / xj
xj *= xx
}
mut sum := term[m - 1]
for i = m - 2; i >= 0; i-- {
if math.abs(sum) <= math.abs(term[i]) {
if abs(sum) <= abs(term[i]) {
break
}
sum = term[i]
}
for i >= 0 {
sum += term[i]
i--
}
return log_factorial + sum
}

View File

@ -1,375 +0,0 @@
// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module factorial
const (
log_sqrt_2pi = 9.18938533204672741780329736e-1
b_numbers = [
/*
Bernoulli numbers B(2),B(4),B(6),...,B(20). Only B(2),...,B(10) currently
* used.
*/
f64(1.0 / (6.0 * 2.0 * 1.0)),
-1.0 / (30.0 * 4.0 * 3.0),
1.0 / (42.0 * 6.0 * 5.0),
-1.0 / (30.0 * 8.0 * 7.0),
5.0 / (66.0 * 10.0 * 9.0),
-691.0 / (2730.0 * 12.0 * 11.0),
7.0 / (6.0 * 14.0 * 13.0),
-3617.0 / (510.0 * 16.0 * 15.0),
43867.0 / (796.0 * 18.0 * 17.0),
-174611.0 / (330.0 * 20.0 * 19.0),
]
factorials_table = [
f64(1.000000000000000000000e+0), /* 0! */
1.000000000000000000000e+0, /* 1! */
2.000000000000000000000e+0, /* 2! */
6.000000000000000000000e+0, /* 3! */
2.400000000000000000000e+1, /* 4! */
1.200000000000000000000e+2, /* 5! */
7.200000000000000000000e+2, /* 6! */
5.040000000000000000000e+3, /* 7! */
4.032000000000000000000e+4, /* 8! */
3.628800000000000000000e+5, /* 9! */
3.628800000000000000000e+6, /* 10! */
3.991680000000000000000e+7, /* 11! */
4.790016000000000000000e+8, /* 12! */
6.227020800000000000000e+9, /* 13! */
8.717829120000000000000e+10, /* 14! */
1.307674368000000000000e+12, /* 15! */
2.092278988800000000000e+13, /* 16! */
3.556874280960000000000e+14, /* 17! */
6.402373705728000000000e+15, /* 18! */
1.216451004088320000000e+17, /* 19! */
2.432902008176640000000e+18, /* 20! */
5.109094217170944000000e+19, /* 21! */
1.124000727777607680000e+21, /* 22! */
2.585201673888497664000e+22, /* 23! */
6.204484017332394393600e+23, /* 24! */
1.551121004333098598400e+25, /* 25! */
4.032914611266056355840e+26, /* 26! */
1.088886945041835216077e+28, /* 27! */
3.048883446117138605015e+29, /* 28! */
8.841761993739701954544e+30, /* 29! */
2.652528598121910586363e+32, /* 30! */
8.222838654177922817726e+33, /* 31! */
2.631308369336935301672e+35, /* 32! */
8.683317618811886495518e+36, /* 33! */
2.952327990396041408476e+38, /* 34! */
1.033314796638614492967e+40, /* 35! */
3.719933267899012174680e+41, /* 36! */
1.376375309122634504632e+43, /* 37! */
5.230226174666011117600e+44, /* 38! */
2.039788208119744335864e+46, /* 39! */
8.159152832478977343456e+47, /* 40! */
3.345252661316380710817e+49, /* 41! */
1.405006117752879898543e+51, /* 42! */
6.041526306337383563736e+52, /* 43! */
2.658271574788448768044e+54, /* 44! */
1.196222208654801945620e+56, /* 45! */
5.502622159812088949850e+57, /* 46! */
2.586232415111681806430e+59, /* 47! */
1.241391559253607267086e+61, /* 48! */
6.082818640342675608723e+62, /* 49! */
3.041409320171337804361e+64, /* 50! */
1.551118753287382280224e+66, /* 51! */
8.065817517094387857166e+67, /* 52! */
4.274883284060025564298e+69, /* 53! */
2.308436973392413804721e+71, /* 54! */
1.269640335365827592597e+73, /* 55! */
7.109985878048634518540e+74, /* 56! */
4.052691950487721675568e+76, /* 57! */
2.350561331282878571829e+78, /* 58! */
1.386831185456898357379e+80, /* 59! */
8.320987112741390144276e+81, /* 60! */
5.075802138772247988009e+83, /* 61! */
3.146997326038793752565e+85, /* 62! */
1.982608315404440064116e+87, /* 63! */
1.268869321858841641034e+89, /* 64! */
8.247650592082470666723e+90, /* 65! */
5.443449390774430640037e+92, /* 66! */
3.647111091818868528825e+94, /* 67! */
2.480035542436830599601e+96, /* 68! */
1.711224524281413113725e+98, /* 69! */
1.197857166996989179607e+100, /* 70! */
8.504785885678623175212e+101, /* 71! */
6.123445837688608686152e+103, /* 72! */
4.470115461512684340891e+105, /* 73! */
3.307885441519386412260e+107, /* 74! */
2.480914081139539809195e+109, /* 75! */
1.885494701666050254988e+111, /* 76! */
1.451830920282858696341e+113, /* 77! */
1.132428117820629783146e+115, /* 78! */
8.946182130782975286851e+116, /* 79! */
7.156945704626380229481e+118, /* 80! */
5.797126020747367985880e+120, /* 81! */
4.753643337012841748421e+122, /* 82! */
3.945523969720658651190e+124, /* 83! */
3.314240134565353266999e+126, /* 84! */
2.817104114380550276949e+128, /* 85! */
2.422709538367273238177e+130, /* 86! */
2.107757298379527717214e+132, /* 87! */
1.854826422573984391148e+134, /* 88! */
1.650795516090846108122e+136, /* 89! */
1.485715964481761497310e+138, /* 90! */
1.352001527678402962552e+140, /* 91! */
1.243841405464130725548e+142, /* 92! */
1.156772507081641574759e+144, /* 93! */
1.087366156656743080274e+146, /* 94! */
1.032997848823905926260e+148, /* 95! */
9.916779348709496892096e+149, /* 96! */
9.619275968248211985333e+151, /* 97! */
9.426890448883247745626e+153, /* 98! */
9.332621544394415268170e+155, /* 99! */
9.332621544394415268170e+157, /* 100! */
9.425947759838359420852e+159, /* 101! */
9.614466715035126609269e+161, /* 102! */
9.902900716486180407547e+163, /* 103! */
1.029901674514562762385e+166, /* 104! */
1.081396758240290900504e+168, /* 105! */
1.146280563734708354534e+170, /* 106! */
1.226520203196137939352e+172, /* 107! */
1.324641819451828974500e+174, /* 108! */
1.443859583202493582205e+176, /* 109! */
1.588245541522742940425e+178, /* 110! */
1.762952551090244663872e+180, /* 111! */
1.974506857221074023537e+182, /* 112! */
2.231192748659813646597e+184, /* 113! */
2.543559733472187557120e+186, /* 114! */
2.925093693493015690688e+188, /* 115! */
3.393108684451898201198e+190, /* 116! */
3.969937160808720895402e+192, /* 117! */
4.684525849754290656574e+194, /* 118! */
5.574585761207605881323e+196, /* 119! */
6.689502913449127057588e+198, /* 120! */
8.094298525273443739682e+200, /* 121! */
9.875044200833601362412e+202, /* 122! */
1.214630436702532967577e+205, /* 123! */
1.506141741511140879795e+207, /* 124! */
1.882677176888926099744e+209, /* 125! */
2.372173242880046885677e+211, /* 126! */
3.012660018457659544810e+213, /* 127! */
3.856204823625804217357e+215, /* 128! */
4.974504222477287440390e+217, /* 129! */
6.466855489220473672507e+219, /* 130! */
8.471580690878820510985e+221, /* 131! */
1.118248651196004307450e+224, /* 132! */
1.487270706090685728908e+226, /* 133! */
1.992942746161518876737e+228, /* 134! */
2.690472707318050483595e+230, /* 135! */
3.659042881952548657690e+232, /* 136! */
5.012888748274991661035e+234, /* 137! */
6.917786472619488492228e+236, /* 138! */
9.615723196941089004197e+238, /* 139! */
1.346201247571752460588e+241, /* 140! */
1.898143759076170969429e+243, /* 141! */
2.695364137888162776589e+245, /* 142! */
3.854370717180072770522e+247, /* 143! */
5.550293832739304789551e+249, /* 144! */
8.047926057471991944849e+251, /* 145! */
1.174997204390910823948e+254, /* 146! */
1.727245890454638911203e+256, /* 147! */
2.556323917872865588581e+258, /* 148! */
3.808922637630569726986e+260, /* 149! */
5.713383956445854590479e+262, /* 150! */
8.627209774233240431623e+264, /* 151! */
1.311335885683452545607e+267, /* 152! */
2.006343905095682394778e+269, /* 153! */
3.089769613847350887959e+271, /* 154! */
4.789142901463393876336e+273, /* 155! */
7.471062926282894447084e+275, /* 156! */
1.172956879426414428192e+278, /* 157! */
1.853271869493734796544e+280, /* 158! */
2.946702272495038326504e+282, /* 159! */
4.714723635992061322407e+284, /* 160! */
7.590705053947218729075e+286, /* 161! */
1.229694218739449434110e+289, /* 162! */
2.004401576545302577600e+291, /* 163! */
3.287218585534296227263e+293, /* 164! */
5.423910666131588774984e+295, /* 165! */
9.003691705778437366474e+297, /* 166! */
1.503616514864999040201e+300, /* 167! */
2.526075744973198387538e+302, /* 168! */
4.269068009004705274939e+304, /* 169! */
7.257415615307998967397e+306, /* 170! */
]
log_factorials_table = [
f64(0.000000000000000000000e+0), /* 0! */
0.000000000000000000000e+0, /* 1! */
6.931471805599453094172e-1, /* 2! */
1.791759469228055000812e+0, /* 3! */
3.178053830347945619647e+0, /* 4! */
4.787491742782045994248e+0, /* 5! */
6.579251212010100995060e+0, /* 6! */
8.525161361065414300166e+0, /* 7! */
1.060460290274525022842e+1, /* 8! */
1.280182748008146961121e+1, /* 9! */
1.510441257307551529523e+1, /* 10! */
1.750230784587388583929e+1, /* 11! */
1.998721449566188614952e+1, /* 12! */
2.255216385312342288557e+1, /* 13! */
2.519122118273868150009e+1, /* 14! */
2.789927138384089156609e+1, /* 15! */
3.067186010608067280376e+1, /* 16! */
3.350507345013688888401e+1, /* 17! */
3.639544520803305357622e+1, /* 18! */
3.933988418719949403622e+1, /* 19! */
4.233561646075348502966e+1, /* 20! */
4.538013889847690802616e+1, /* 21! */
4.847118135183522387964e+1, /* 22! */
5.160667556776437357045e+1, /* 23! */
5.478472939811231919009e+1, /* 24! */
5.800360522298051993929e+1, /* 25! */
6.126170176100200198477e+1, /* 26! */
6.455753862700633105895e+1, /* 27! */
6.788974313718153498289e+1, /* 28! */
7.125703896716800901007e+1, /* 29! */
7.465823634883016438549e+1, /* 30! */
7.809222355331531063142e+1, /* 31! */
8.155795945611503717850e+1, /* 32! */
8.505446701758151741396e+1, /* 33! */
8.858082754219767880363e+1, /* 34! */
9.213617560368709248333e+1, /* 35! */
9.571969454214320248496e+1, /* 36! */
9.933061245478742692933e+1, /* 37! */
1.029681986145138126988e+2, /* 38! */
1.066317602606434591262e+2, /* 39! */
1.103206397147573954291e+2, /* 40! */
1.140342117814617032329e+2, /* 41! */
1.177718813997450715388e+2, /* 42! */
1.215330815154386339623e+2, /* 43! */
1.253172711493568951252e+2, /* 44! */
1.291239336391272148826e+2, /* 45! */
1.329525750356163098828e+2, /* 46! */
1.368027226373263684696e+2, /* 47! */
1.406739236482342593987e+2, /* 48! */
1.445657439463448860089e+2, /* 49! */
1.484777669517730320675e+2, /* 50! */
1.524095925844973578392e+2, /* 51! */
1.563608363030787851941e+2, /* 52! */
1.603311282166309070282e+2, /* 53! */
1.643201122631951814118e+2, /* 54! */
1.683274454484276523305e+2, /* 55! */
1.723527971391628015638e+2, /* 56! */
1.763958484069973517152e+2, /* 57! */
1.804562914175437710518e+2, /* 58! */
1.845338288614494905025e+2, /* 59! */
1.886281734236715911873e+2, /* 60! */
1.927390472878449024360e+2, /* 61! */
1.968661816728899939914e+2, /* 62! */
2.010093163992815266793e+2, /* 63! */
2.051681994826411985358e+2, /* 64! */
2.093425867525368356464e+2, /* 65! */
2.135322414945632611913e+2, /* 66! */
2.177369341139542272510e+2, /* 67! */
2.219564418191303339501e+2, /* 68! */
2.261905483237275933323e+2, /* 69! */
2.304390435657769523214e+2, /* 70! */
2.347017234428182677427e+2, /* 71! */
2.389783895618343230538e+2, /* 72! */
2.432688490029827141829e+2, /* 73! */
2.475729140961868839366e+2, /* 74! */
2.518904022097231943772e+2, /* 75! */
2.562211355500095254561e+2, /* 76! */
2.605649409718632093053e+2, /* 77! */
2.649216497985528010421e+2, /* 78! */
2.692910976510198225363e+2, /* 79! */
2.736731242856937041486e+2, /* 80! */
2.780675734403661429141e+2, /* 81! */
2.824742926876303960274e+2, /* 82! */
2.868931332954269939509e+2, /* 83! */
2.913239500942703075662e+2, /* 84! */
2.957666013507606240211e+2, /* 85! */
3.002209486470141317540e+2, /* 86! */
3.046868567656687154726e+2, /* 87! */
3.091641935801469219449e+2, /* 88! */
3.136528299498790617832e+2, /* 89! */
3.181526396202093268500e+2, /* 90! */
3.226634991267261768912e+2, /* 91! */
3.271852877037752172008e+2, /* 92! */
3.317178871969284731381e+2, /* 93! */
3.362611819791984770344e+2, /* 94! */
3.408150588707990178690e+2, /* 95! */
3.453794070622668541074e+2, /* 96! */
3.499541180407702369296e+2, /* 97! */
3.545390855194408088492e+2, /* 98! */
3.591342053695753987760e+2, /* 99! */
3.637393755555634901441e+2, /* 100! */
3.683544960724047495950e+2, /* 101! */
3.729794688856890206760e+2, /* 102! */
3.776141978739186564468e+2, /* 103! */
3.822585887730600291111e+2, /* 104! */
3.869125491232175524822e+2, /* 105! */
3.915759882173296196258e+2, /* 106! */
3.962488170517915257991e+2, /* 107! */
4.009309482789157454921e+2, /* 108! */
4.056222961611448891925e+2, /* 109! */
4.103227765269373054205e+2, /* 110! */
4.150323067282496395563e+2, /* 111! */
4.197508055995447340991e+2, /* 112! */
4.244781934182570746677e+2, /* 113! */
4.292143918666515701285e+2, /* 114! */
4.339593239950148201939e+2, /* 115! */
4.387129141861211848399e+2, /* 116! */
4.434750881209189409588e+2, /* 117! */
4.482457727453846057188e+2, /* 118! */
4.530248962384961351041e+2, /* 119! */
4.578123879812781810984e+2, /* 120! */
4.626081785268749221865e+2, /* 121! */
4.674121995716081787447e+2, /* 122! */
4.722243839269805962399e+2, /* 123! */
4.770446654925856331047e+2, /* 124! */
4.818729792298879342285e+2, /* 125! */
4.867092611368394122258e+2, /* 126! */
4.915534482232980034989e+2, /* 127! */
4.964054784872176206648e+2, /* 128! */
5.012652908915792927797e+2, /* 129! */
5.061328253420348751997e+2, /* 130! */
5.110080226652360267439e+2, /* 131! */
5.158908245878223975982e+2, /* 132! */
5.207811737160441513633e+2, /* 133! */
5.256790135159950627324e+2, /* 134! */
5.305842882944334921812e+2, /* 135! */
5.354969431801695441897e+2, /* 136! */
5.404169241059976691050e+2, /* 137! */
5.453441777911548737966e+2, /* 138! */
5.502786517242855655538e+2, /* 139! */
5.552202941468948698523e+2, /* 140! */
5.601690540372730381305e+2, /* 141! */
5.651248810948742988613e+2, /* 142! */
5.700877257251342061414e+2, /* 143! */
5.750575390247102067619e+2, /* 144! */
5.800342727671307811636e+2, /* 145! */
5.850178793888391176022e+2, /* 146! */
5.900083119756178539038e+2, /* 147! */
5.950055242493819689670e+2, /* 148! */
6.000094705553274281080e+2, /* 149! */
6.050201058494236838580e+2, /* 150! */
6.100373856862386081868e+2, /* 151! */
6.150612662070848845750e+2, /* 152! */
6.200917041284773200381e+2, /* 153! */
6.251286567308909491967e+2, /* 154! */
6.301720818478101958172e+2, /* 155! */
6.352219378550597328635e+2, /* 156! */
6.402781836604080409209e+2, /* 157! */
6.453407786934350077245e+2, /* 158! */
6.504096828956552392500e+2, /* 159! */
6.554848567108890661717e+2, /* 160! */
6.605662610758735291676e+2, /* 161! */
6.656538574111059132426e+2, /* 162! */
6.707476076119126755767e+2, /* 163! */
6.758474740397368739994e+2, /* 164! */
6.809534195136374546094e+2, /* 165! */
6.860654073019939978423e+2, /* 166! */
6.911834011144107529496e+2, /* 167! */
6.963073650938140118743e+2, /* 168! */
7.014372638087370853465e+2, /* 169! */
7.065730622457873471107e+2, /* 170! */
7.117147258022900069535e+2, /* 171! */
]
)

View File

@ -1,14 +0,0 @@
import math
import math.factorial as fact
fn test_factorial() {
assert fact.factorial(12) == 479001600
assert fact.factorial(5) == 120
assert fact.factorial(0) == 1
}
fn test_log_factorial() {
assert fact.log_factorial(12) == math.log(479001600)
assert fact.log_factorial(5) == math.log(120)
assert fact.log_factorial(0) == math.log(1)
}

View File

@ -0,0 +1,711 @@
module math
const (
log_sqrt_2pi = 9.18938533204672741780329736e-1
bernoulli = [
/*
Bernoulli numbers B(2),B(4),B(6),...,B(20). Only B(2),...,B(10) currently
* used.
*/
1.0 / (6.0 * 2.0 * 1.0),
-1.0 / (30.0 * 4.0 * 3.0),
1.0 / (42.0 * 6.0 * 5.0),
-1.0 / (30.0 * 8.0 * 7.0),
5.0 / (66.0 * 10.0 * 9.0),
-691.0 / (2730.0 * 12.0 * 11.0),
7.0 / (6.0 * 14.0 * 13.0),
-3617.0 / (510.0 * 16.0 * 15.0),
43867.0 / (796.0 * 18.0 * 17.0),
-174611.0 / (330.0 * 20.0 * 19.0),
]
factorials_table = [
// 0!
1.000000000000000000000e+0,
// 1!
1.000000000000000000000e+0,
// 2!
2.000000000000000000000e+0,
// 3!
6.000000000000000000000e+0,
// 4!
2.400000000000000000000e+1,
// 5!
1.200000000000000000000e+2,
// 6!
7.200000000000000000000e+2,
// 7!
5.040000000000000000000e+3,
// 8!
4.032000000000000000000e+4,
// 9!
3.628800000000000000000e+5,
// 10!
3.628800000000000000000e+6,
// 11!
3.991680000000000000000e+7,
// 12!
4.790016000000000000000e+8,
// 13!
6.227020800000000000000e+9,
// 14!
8.717829120000000000000e+10,
// 15!
1.307674368000000000000e+12,
// 16!
2.092278988800000000000e+13,
// 17!
3.556874280960000000000e+14,
// 18!
6.402373705728000000000e+15,
// 19!
1.216451004088320000000e+17,
// 20!
2.432902008176640000000e+18,
// 21!
5.109094217170944000000e+19,
// 22!
1.124000727777607680000e+21,
// 23!
2.585201673888497664000e+22,
// 24!
6.204484017332394393600e+23,
// 25!
1.551121004333098598400e+25,
// 26!
4.032914611266056355840e+26,
// 27!
1.088886945041835216077e+28,
// 28!
3.048883446117138605015e+29,
// 29!
8.841761993739701954544e+30,
// 30!
2.652528598121910586363e+32,
// 31!
8.222838654177922817726e+33,
// 32!
2.631308369336935301672e+35,
// 33!
8.683317618811886495518e+36,
// 34!
2.952327990396041408476e+38,
// 35!
1.033314796638614492967e+40,
// 36!
3.719933267899012174680e+41,
// 37!
1.376375309122634504632e+43,
// 38!
5.230226174666011117600e+44,
// 39!
2.039788208119744335864e+46,
// 40!
8.159152832478977343456e+47,
// 41!
3.345252661316380710817e+49,
// 42!
1.405006117752879898543e+51,
// 43!
6.041526306337383563736e+52,
// 44!
2.658271574788448768044e+54,
// 45!
1.196222208654801945620e+56,
// 46!
5.502622159812088949850e+57,
// 47!
2.586232415111681806430e+59,
// 48!
1.241391559253607267086e+61,
// 49!
6.082818640342675608723e+62,
// 50!
3.041409320171337804361e+64,
// 51!
1.551118753287382280224e+66,
// 52!
8.065817517094387857166e+67,
// 53!
4.274883284060025564298e+69,
// 54!
2.308436973392413804721e+71,
// 55!
1.269640335365827592597e+73,
// 56!
7.109985878048634518540e+74,
// 57!
4.052691950487721675568e+76,
// 58!
2.350561331282878571829e+78,
// 59!
1.386831185456898357379e+80,
// 60!
8.320987112741390144276e+81,
// 61!
5.075802138772247988009e+83,
// 62!
3.146997326038793752565e+85,
// 63!
1.982608315404440064116e+87,
// 64!
1.268869321858841641034e+89,
// 65!
8.247650592082470666723e+90,
// 66!
5.443449390774430640037e+92,
// 67!
3.647111091818868528825e+94,
// 68!
2.480035542436830599601e+96,
// 69!
1.711224524281413113725e+98,
// 70!
1.197857166996989179607e+100,
// 71!
8.504785885678623175212e+101,
// 72!
6.123445837688608686152e+103,
// 73!
4.470115461512684340891e+105,
// 74!
3.307885441519386412260e+107,
// 75!
2.480914081139539809195e+109,
// 76!
1.885494701666050254988e+111,
// 77!
1.451830920282858696341e+113,
// 78!
1.132428117820629783146e+115,
// 79!
8.946182130782975286851e+116,
// 80!
7.156945704626380229481e+118,
// 81!
5.797126020747367985880e+120,
// 82!
4.753643337012841748421e+122,
// 83!
3.945523969720658651190e+124,
// 84!
3.314240134565353266999e+126,
// 85!
2.817104114380550276949e+128,
// 86!
2.422709538367273238177e+130,
// 87!
2.107757298379527717214e+132,
// 88!
1.854826422573984391148e+134,
// 89!
1.650795516090846108122e+136,
// 90!
1.485715964481761497310e+138,
// 91!
1.352001527678402962552e+140,
// 92!
1.243841405464130725548e+142,
// 93!
1.156772507081641574759e+144,
// 94!
1.087366156656743080274e+146,
// 95!
1.032997848823905926260e+148,
// 96!
9.916779348709496892096e+149,
// 97!
9.619275968248211985333e+151,
// 98!
9.426890448883247745626e+153,
// 99!
9.332621544394415268170e+155,
// 100!
9.332621544394415268170e+157,
// 101!
9.425947759838359420852e+159,
// 102!
9.614466715035126609269e+161,
// 103!
9.902900716486180407547e+163,
// 104!
1.029901674514562762385e+166,
// 105!
1.081396758240290900504e+168,
// 106!
1.146280563734708354534e+170,
// 107!
1.226520203196137939352e+172,
// 108!
1.324641819451828974500e+174,
// 109!
1.443859583202493582205e+176,
// 110!
1.588245541522742940425e+178,
// 111!
1.762952551090244663872e+180,
// 112!
1.974506857221074023537e+182,
// 113!
2.231192748659813646597e+184,
// 114!
2.543559733472187557120e+186,
// 115!
2.925093693493015690688e+188,
// 116!
3.393108684451898201198e+190,
// 117!
3.969937160808720895402e+192,
// 118!
4.684525849754290656574e+194,
// 119!
5.574585761207605881323e+196,
// 120!
6.689502913449127057588e+198,
// 121!
8.094298525273443739682e+200,
// 122!
9.875044200833601362412e+202,
// 123!
1.214630436702532967577e+205,
// 124!
1.506141741511140879795e+207,
// 125!
1.882677176888926099744e+209,
// 126!
2.372173242880046885677e+211,
// 127!
3.012660018457659544810e+213,
// 128!
3.856204823625804217357e+215,
// 129!
4.974504222477287440390e+217,
// 130!
6.466855489220473672507e+219,
// 131!
8.471580690878820510985e+221,
// 132!
1.118248651196004307450e+224,
// 133!
1.487270706090685728908e+226,
// 134!
1.992942746161518876737e+228,
// 135!
2.690472707318050483595e+230,
// 136!
3.659042881952548657690e+232,
// 137!
5.012888748274991661035e+234,
// 138!
6.917786472619488492228e+236,
// 139!
9.615723196941089004197e+238,
// 140!
1.346201247571752460588e+241,
// 141!
1.898143759076170969429e+243,
// 142!
2.695364137888162776589e+245,
// 143!
3.854370717180072770522e+247,
// 144!
5.550293832739304789551e+249,
// 145!
8.047926057471991944849e+251,
// 146!
1.174997204390910823948e+254,
// 147!
1.727245890454638911203e+256,
// 148!
2.556323917872865588581e+258,
// 149!
3.808922637630569726986e+260,
// 150!
5.713383956445854590479e+262,
// 151!
8.627209774233240431623e+264,
// 152!
1.311335885683452545607e+267,
// 153!
2.006343905095682394778e+269,
// 154!
3.089769613847350887959e+271,
// 155!
4.789142901463393876336e+273,
// 156!
7.471062926282894447084e+275,
// 157!
1.172956879426414428192e+278,
// 158!
1.853271869493734796544e+280,
// 159!
2.946702272495038326504e+282,
// 160!
4.714723635992061322407e+284,
// 161!
7.590705053947218729075e+286,
// 162!
1.229694218739449434110e+289,
// 163!
2.004401576545302577600e+291,
// 164!
3.287218585534296227263e+293,
// 165!
5.423910666131588774984e+295,
// 166!
9.003691705778437366474e+297,
// 167!
1.503616514864999040201e+300,
// 168!
2.526075744973198387538e+302,
// 169!
4.269068009004705274939e+304,
// 170!
7.257415615307998967397e+306,
]
log_factorials_table = [
// 0!
0.000000000000000000000e+0,
// 1!
0.000000000000000000000e+0,
// 2!
6.931471805599453094172e-1,
// 3!
1.791759469228055000812e+0,
// 4!
3.178053830347945619647e+0,
// 5!
4.787491742782045994248e+0,
// 6!
6.579251212010100995060e+0,
// 7!
8.525161361065414300166e+0,
// 8!
1.060460290274525022842e+1,
// 9!
1.280182748008146961121e+1,
// 10!
1.510441257307551529523e+1,
// 11!
1.750230784587388583929e+1,
// 12!
1.998721449566188614952e+1,
// 13!
2.255216385312342288557e+1,
// 14!
2.519122118273868150009e+1,
// 15!
2.789927138384089156609e+1,
// 16!
3.067186010608067280376e+1,
// 17!
3.350507345013688888401e+1,
// 18!
3.639544520803305357622e+1,
// 19!
3.933988418719949403622e+1,
// 20!
4.233561646075348502966e+1,
// 21!
4.538013889847690802616e+1,
// 22!
4.847118135183522387964e+1,
// 23!
5.160667556776437357045e+1,
// 24!
5.478472939811231919009e+1,
// 25!
5.800360522298051993929e+1,
// 26!
6.126170176100200198477e+1,
// 27!
6.455753862700633105895e+1,
// 28!
6.788974313718153498289e+1,
// 29!
7.125703896716800901007e+1,
// 30!
7.465823634883016438549e+1,
// 31!
7.809222355331531063142e+1,
// 32!
8.155795945611503717850e+1,
// 33!
8.505446701758151741396e+1,
// 34!
8.858082754219767880363e+1,
// 35!
9.213617560368709248333e+1,
// 36!
9.571969454214320248496e+1,
// 37!
9.933061245478742692933e+1,
// 38!
1.029681986145138126988e+2,
// 39!
1.066317602606434591262e+2,
// 40!
1.103206397147573954291e+2,
// 41!
1.140342117814617032329e+2,
// 42!
1.177718813997450715388e+2,
// 43!
1.215330815154386339623e+2,
// 44!
1.253172711493568951252e+2,
// 45!
1.291239336391272148826e+2,
// 46!
1.329525750356163098828e+2,
// 47!
1.368027226373263684696e+2,
// 48!
1.406739236482342593987e+2,
// 49!
1.445657439463448860089e+2,
// 50!
1.484777669517730320675e+2,
// 51!
1.524095925844973578392e+2,
// 52!
1.563608363030787851941e+2,
// 53!
1.603311282166309070282e+2,
// 54!
1.643201122631951814118e+2,
// 55!
1.683274454484276523305e+2,
// 56!
1.723527971391628015638e+2,
// 57!
1.763958484069973517152e+2,
// 58!
1.804562914175437710518e+2,
// 59!
1.845338288614494905025e+2,
// 60!
1.886281734236715911873e+2,
// 61!
1.927390472878449024360e+2,
// 62!
1.968661816728899939914e+2,
// 63!
2.010093163992815266793e+2,
// 64!
2.051681994826411985358e+2,
// 65!
2.093425867525368356464e+2,
// 66!
2.135322414945632611913e+2,
// 67!
2.177369341139542272510e+2,
// 68!
2.219564418191303339501e+2,
// 69!
2.261905483237275933323e+2,
// 70!
2.304390435657769523214e+2,
// 71!
2.347017234428182677427e+2,
// 72!
2.389783895618343230538e+2,
// 73!
2.432688490029827141829e+2,
// 74!
2.475729140961868839366e+2,
// 75!
2.518904022097231943772e+2,
// 76!
2.562211355500095254561e+2,
// 77!
2.605649409718632093053e+2,
// 78!
2.649216497985528010421e+2,
// 79!
2.692910976510198225363e+2,
// 80!
2.736731242856937041486e+2,
// 81!
2.780675734403661429141e+2,
// 82!
2.824742926876303960274e+2,
// 83!
2.868931332954269939509e+2,
// 84!
2.913239500942703075662e+2,
// 85!
2.957666013507606240211e+2,
// 86!
3.002209486470141317540e+2,
// 87!
3.046868567656687154726e+2,
// 88!
3.091641935801469219449e+2,
// 89!
3.136528299498790617832e+2,
// 90!
3.181526396202093268500e+2,
// 91!
3.226634991267261768912e+2,
// 92!
3.271852877037752172008e+2,
// 93!
3.317178871969284731381e+2,
// 94!
3.362611819791984770344e+2,
// 95!
3.408150588707990178690e+2,
// 96!
3.453794070622668541074e+2,
// 97!
3.499541180407702369296e+2,
// 98!
3.545390855194408088492e+2,
// 99!
3.591342053695753987760e+2,
// 100!
3.637393755555634901441e+2,
// 101!
3.683544960724047495950e+2,
// 102!
3.729794688856890206760e+2,
// 103!
3.776141978739186564468e+2,
// 104!
3.822585887730600291111e+2,
// 105!
3.869125491232175524822e+2,
// 106!
3.915759882173296196258e+2,
// 107!
3.962488170517915257991e+2,
// 108!
4.009309482789157454921e+2,
// 109!
4.056222961611448891925e+2,
// 110!
4.103227765269373054205e+2,
// 111!
4.150323067282496395563e+2,
// 112!
4.197508055995447340991e+2,
// 113!
4.244781934182570746677e+2,
// 114!
4.292143918666515701285e+2,
// 115!
4.339593239950148201939e+2,
// 116!
4.387129141861211848399e+2,
// 117!
4.434750881209189409588e+2,
// 118!
4.482457727453846057188e+2,
// 119!
4.530248962384961351041e+2,
// 120!
4.578123879812781810984e+2,
// 121!
4.626081785268749221865e+2,
// 122!
4.674121995716081787447e+2,
// 123!
4.722243839269805962399e+2,
// 124!
4.770446654925856331047e+2,
// 125!
4.818729792298879342285e+2,
// 126!
4.867092611368394122258e+2,
// 127!
4.915534482232980034989e+2,
// 128!
4.964054784872176206648e+2,
// 129!
5.012652908915792927797e+2,
// 130!
5.061328253420348751997e+2,
// 131!
5.110080226652360267439e+2,
// 132!
5.158908245878223975982e+2,
// 133!
5.207811737160441513633e+2,
// 134!
5.256790135159950627324e+2,
// 135!
5.305842882944334921812e+2,
// 136!
5.354969431801695441897e+2,
// 137!
5.404169241059976691050e+2,
// 138!
5.453441777911548737966e+2,
// 139!
5.502786517242855655538e+2,
// 140!
5.552202941468948698523e+2,
// 141!
5.601690540372730381305e+2,
// 142!
5.651248810948742988613e+2,
// 143!
5.700877257251342061414e+2,
// 144!
5.750575390247102067619e+2,
// 145!
5.800342727671307811636e+2,
// 146!
5.850178793888391176022e+2,
// 147!
5.900083119756178539038e+2,
// 148!
5.950055242493819689670e+2,
// 149!
6.000094705553274281080e+2,
// 150!
6.050201058494236838580e+2,
// 151!
6.100373856862386081868e+2,
// 152!
6.150612662070848845750e+2,
// 153!
6.200917041284773200381e+2,
// 154!
6.251286567308909491967e+2,
// 155!
6.301720818478101958172e+2,
// 156!
6.352219378550597328635e+2,
// 157!
6.402781836604080409209e+2,
// 158!
6.453407786934350077245e+2,
// 159!
6.504096828956552392500e+2,
// 160!
6.554848567108890661717e+2,
// 161!
6.605662610758735291676e+2,
// 162!
6.656538574111059132426e+2,
// 163!
6.707476076119126755767e+2,
// 164!
6.758474740397368739994e+2,
// 165!
6.809534195136374546094e+2,
// 166!
6.860654073019939978423e+2,
// 167!
6.911834011144107529496e+2,
// 168!
6.963073650938140118743e+2,
// 169!
7.014372638087370853465e+2,
// 170!
7.065730622457873471107e+2,
// 171!
7.117147258022900069535e+2,
]
)

View File

@ -0,0 +1,13 @@
module math
fn test_factorial() {
assert factorial(12) == 479001600
assert factorial(5) == 120
assert factorial(0) == 1
}
fn test_log_factorial() {
assert log_factorial(12) == log(479001600)
assert log_factorial(5) == log(120)
assert log_factorial(0) == log(1)
}

View File

@ -0,0 +1,34 @@
module math
fn C.ceil(x f64) f64
fn C.floor(x f64) f64
fn C.round(x f64) f64
fn C.trunc(x f64) f64
// ceil returns the nearest f64 greater or equal to the provided value.
[inline]
pub fn ceil(x f64) f64 {
return C.ceil(x)
}
// floor returns the nearest f64 lower or equal of the provided value.
[inline]
pub fn floor(x f64) f64 {
return C.floor(x)
}
// round returns the integer nearest to the provided value.
[inline]
pub fn round(x f64) f64 {
return C.round(x)
}
// trunc rounds a toward zero, returning the nearest integral value that is not
// larger in magnitude than a.
[inline]
pub fn trunc(x f64) f64 {
return C.trunc(x)
}

View File

@ -0,0 +1,34 @@
module math
fn JS.Math.ceil(x f64) f64
fn JS.Math.floor(x f64) f64
fn JS.Math.round(x f64) f64
fn JS.Math.trunc(x f64) f64
// ceil returns the nearest f64 greater or equal to the provided value.
[inline]
pub fn ceil(x f64) f64 {
return JS.Math.ceil(x)
}
// floor returns the nearest f64 lower or equal of the provided value.
[inline]
pub fn floor(x f64) f64 {
return JS.Math.floor(x)
}
// round returns the integer nearest to the provided value.
[inline]
pub fn round(x f64) f64 {
return JS.Math.round(x)
}
// trunc rounds a toward zero, returning the nearest integral value that is not
// larger in magnitude than a.
[inline]
pub fn trunc(x f64) f64 {
return JS.Math.trunc(x)
}

105
vlib/math/floor.v 100644
View File

@ -0,0 +1,105 @@
module math
// floor returns the greatest integer value less than or equal to x.
//
// special cases are:
// floor(±0) = ±0
// floor(±inf) = ±inf
// floor(nan) = nan
pub fn floor(x f64) f64 {
if x == 0 || is_nan(x) || is_inf(x, 0) {
return x
}
if x < 0 {
mut d, fract := modf(-x)
if fract != 0.0 {
d = d + 1
}
return -d
}
d, _ := modf(x)
return d
}
// ceil returns the least integer value greater than or equal to x.
//
// special cases are:
// ceil(±0) = ±0
// ceil(±inf) = ±inf
// ceil(nan) = nan
pub fn ceil(x f64) f64 {
return -floor(-x)
}
// trunc returns the integer value of x.
//
// special cases are:
// trunc(±0) = ±0
// trunc(±inf) = ±inf
// trunc(nan) = nan
pub fn trunc(x f64) f64 {
if x == 0 || is_nan(x) || is_inf(x, 0) {
return x
}
d, _ := modf(x)
return d
}
// round returns the nearest integer, rounding half away from zero.
//
// special cases are:
// round(±0) = ±0
// round(±inf) = ±inf
// round(nan) = nan
pub fn round(x f64) f64 {
if x == 0 || is_nan(x) || is_inf(x, 0) {
return x
}
// Largest integer <= x
mut y := floor(x) // Fractional part
mut r := x - y // Round up to nearest.
if r > 0.5 {
unsafe {
goto rndup
}
}
// Round to even
if r == 0.5 {
r = y - 2.0 * floor(0.5 * y)
if r == 1.0 {
rndup:
y += 1.0
}
}
// Else round down.
return y
}
// round_to_even returns the nearest integer, rounding ties to even.
//
// special cases are:
// round_to_even(±0) = ±0
// round_to_even(±inf) = ±inf
// round_to_even(nan) = nan
pub fn round_to_even(x f64) f64 {
mut bits := f64_bits(x)
mut e_ := (bits >> shift) & mask
if e_ >= bias {
// round abs(x) >= 1.
// - Large numbers without fractional components, infinity, and nan are unchanged.
// - Add 0.499.. or 0.5 before truncating depending on whether the truncated
// number is even or odd (respectively).
half_minus_ulp := u64(u64(1) << (shift - 1)) - 1
e_ -= u64(bias)
bits += (half_minus_ulp + (bits >> (shift - e_)) & 1) >> e_
bits &= frac_mask >> e_
bits ^= frac_mask >> e_
} else if e_ == bias - 1 && bits & frac_mask != 0 {
// round 0.5 < abs(x) < 1.
bits = bits & sign_mask | uvone // +-1
} else {
// round abs(x) <= 0.5 including denormals.
bits &= sign_mask // +-0
}
return f64_from_bits(bits)
}

View File

@ -0,0 +1,17 @@
module math
fn C.tgamma(x f64) f64
fn C.lgamma(x f64) f64
// gamma computes the gamma function value
[inline]
pub fn gamma(a f64) f64 {
return C.tgamma(a)
}
// log_gamma computes the log-gamma function value
[inline]
pub fn log_gamma(x f64) f64 {
return C.lgamma(x)
}

335
vlib/math/gamma.v 100644
View File

@ -0,0 +1,335 @@
module math
// gamma function computed by Stirling's formula.
// The pair of results must be multiplied together to get the actual answer.
// The multiplication is left to the caller so that, if careful, the caller can avoid
// infinity for 172 <= x <= 180.
// The polynomial is valid for 33 <= x <= 172 larger values are only used
// in reciprocal and produce denormalized floats. The lower precision there
// masks any imprecision in the polynomial.
fn stirling(x f64) (f64, f64) {
if x > 200 {
return inf(1), 1.0
}
sqrt_two_pi := 2.506628274631000502417
max_stirling := 143.01608
mut w := 1.0 / x
w = 1.0 + w * ((((gamma_s[0] * w + gamma_s[1]) * w + gamma_s[2]) * w + gamma_s[3]) * w +
gamma_s[4])
mut y1 := exp(x)
mut y2 := 1.0
if x > max_stirling { // avoid Pow() overflow
v := pow(x, 0.5 * x - 0.25)
y1_ := y1
y1 = v
y2 = v / y1_
} else {
y1 = pow(x, x - 0.5) / y1
}
return y1, f64(sqrt_two_pi) * w * y2
}
// gamma returns the gamma function of x.
//
// special ifs are:
// gamma(+inf) = +inf
// gamma(+0) = +inf
// gamma(-0) = -inf
// gamma(x) = nan for integer x < 0
// gamma(-inf) = nan
// gamma(nan) = nan
pub fn gamma(a f64) f64 {
mut x := a
euler := 0.57721566490153286060651209008240243104215933593992 // A001620
if is_neg_int(x) || is_inf(x, -1) || is_nan(x) {
return nan()
}
if is_inf(x, 1) {
return inf(1)
}
if x == 0.0 {
return copysign(inf(1), x)
}
mut q := abs(x)
mut p := floor(q)
if q > 33 {
if x >= 0 {
y1, y2 := stirling(x)
return y1 * y2
}
// Note: x is negative but (checked above) not a negative integer,
// so x must be small enough to be in range for conversion to i64.
// If |x| were >= 2⁶³ it would have to be an integer.
mut signgam := 1
ip := i64(p)
if (ip & 1) == 0 {
signgam = -1
}
mut z := q - p
if z > 0.5 {
p = p + 1
z = q - p
}
z = q * sin(pi * z)
if z == 0 {
return inf(signgam)
}
sq1, sq2 := stirling(q)
absz := abs(z)
d := absz * sq1 * sq2
if is_inf(d, 0) {
z = pi / absz / sq1 / sq2
} else {
z = pi / d
}
return f64(signgam) * z
}
// Reduce argument
mut z := 1.0
for x >= 3 {
x = x - 1
z = z * x
}
for x < 0 {
if x > -1e-09 {
unsafe {
goto small
}
}
z = z / x
x = x + 1
}
for x < 2 {
if x < 1e-09 {
unsafe {
goto small
}
}
z = z / x
x = x + 1
}
if x == 2 {
return z
}
x = x - 2
p = (((((x * gamma_p[0] + gamma_p[1]) * x + gamma_p[2]) * x + gamma_p[3]) * x +
gamma_p[4]) * x + gamma_p[5]) * x + gamma_p[6]
q = ((((((x * gamma_q[0] + gamma_q[1]) * x + gamma_q[2]) * x + gamma_q[3]) * x +
gamma_q[4]) * x + gamma_q[5]) * x + gamma_q[6]) * x + gamma_q[7]
if true {
return z * p / q
}
small:
if x == 0 {
return inf(1)
}
return z / ((1.0 + euler * x) * x)
}
// log_gamma returns the natural logarithm and sign (-1 or +1) of Gamma(x).
//
// special ifs are:
// log_gamma(+inf) = +inf
// log_gamma(0) = +inf
// log_gamma(-integer) = +inf
// log_gamma(-inf) = -inf
// log_gamma(nan) = nan
pub fn log_gamma(x f64) f64 {
y, _ := log_gamma_sign(x)
return y
}
pub fn log_gamma_sign(a f64) (f64, int) {
mut x := a
ymin := 1.461632144968362245
tiny := exp2(-70)
two52 := exp2(52) // 0x4330000000000000 ~4.5036e+15
two58 := exp2(58) // 0x4390000000000000 ~2.8823e+17
tc := 1.46163214496836224576e+00 // 0x3FF762D86356BE3F
tf := -1.21486290535849611461e-01 // 0xBFBF19B9BCC38A42
// tt := -(tail of tf)
tt := -3.63867699703950536541e-18 // 0xBC50C7CAA48A971F
mut sign := 1
if is_nan(x) {
return x, sign
}
if is_inf(x, 1) {
return x, sign
}
if x == 0.0 {
return inf(1), sign
}
mut neg := false
if x < 0 {
x = -x
neg = true
}
if x < tiny { // if |x| < 2**-70, return -log(|x|)
if neg {
sign = -1
}
return -log(x), sign
}
mut nadj := 0.0
if neg {
if x >= two52 {
// x| >= 2**52, must be -integer
return inf(1), sign
}
t := sin_pi(x)
if t == 0 {
return inf(1), sign
}
nadj = log(pi / abs(t * x))
if t < 0 {
sign = -1
}
}
mut lgamma := 0.0
if x == 1 || x == 2 { // purge off 1 and 2
return 0.0, sign
} else if x < 2 { // use lgamma(x) = lgamma(x+1) - log(x)
mut y := 0.0
mut i := 0
if x <= 0.9 {
lgamma = -log(x)
if x >= (ymin - 1 + 0.27) { // 0.7316 <= x <= 0.9
y = 1.0 - x
i = 0
} else if x >= (ymin - 1 - 0.27) { // 0.2316 <= x < 0.7316
y = x - (tc - 1)
i = 1
} else { // 0 < x < 0.2316
y = x
i = 2
}
} else {
lgamma = 0
if x >= (ymin + 0.27) { // 1.7316 <= x < 2
y = f64(2) - x
i = 0
} else if x >= (ymin - 0.27) { // 1.2316 <= x < 1.7316
y = x - tc
i = 1
} else { // 0.9 < x < 1.2316
y = x - 1
i = 2
}
}
if i == 0 {
z := y * y
gamma_p1 := lgamma_a[0] + z * (lgamma_a[2] + z * (lgamma_a[4] + z * (lgamma_a[6] +
z * (lgamma_a[8] + z * lgamma_a[10]))))
gamma_p2 := z * (lgamma_a[1] + z * (lgamma_a[3] + z * (lgamma_a[5] + z * (lgamma_a[7] +
z * (lgamma_a[9] + z * lgamma_a[11])))))
p := y * gamma_p1 + gamma_p2
lgamma += (p - 0.5 * y)
} else if i == 1 {
z := y * y
w := z * y
gamma_p1 := lgamma_t[0] + w * (lgamma_t[3] + w * (lgamma_t[6] + w * (lgamma_t[9] +
w * lgamma_t[12]))) // parallel comp
gamma_p2 := lgamma_t[1] + w * (lgamma_t[4] + w * (lgamma_t[7] + w * (lgamma_t[10] +
w * lgamma_t[13])))
gamma_p3 := lgamma_t[2] + w * (lgamma_t[5] + w * (lgamma_t[8] + w * (lgamma_t[11] +
w * lgamma_t[14])))
p := z * gamma_p1 - (tt - w * (gamma_p2 + y * gamma_p3))
lgamma += (tf + p)
} else if i == 2 {
gamma_p1 := y * (lgamma_u[0] + y * (lgamma_u[1] + y * (lgamma_u[2] + y * (lgamma_u[3] +
y * (lgamma_u[4] + y * lgamma_u[5])))))
gamma_p2 := 1.0 + y * (lgamma_v[1] + y * (lgamma_v[2] + y * (lgamma_v[3] +
y * (lgamma_v[4] + y * lgamma_v[5]))))
lgamma += (-0.5 * y + gamma_p1 / gamma_p2)
}
} else if x < 8 { // 2 <= x < 8
i := int(x)
y := x - f64(i)
p := y * (lgamma_s[0] + y * (lgamma_s[1] + y * (lgamma_s[2] + y * (lgamma_s[3] +
y * (lgamma_s[4] + y * (lgamma_s[5] + y * lgamma_s[6]))))))
q := 1.0 + y * (lgamma_r[1] + y * (lgamma_r[2] + y * (lgamma_r[3] + y * (lgamma_r[4] +
y * (lgamma_r[5] + y * lgamma_r[6])))))
lgamma = 0.5 * y + p / q
mut z := 1.0 // lgamma(1+s) = log(s) + lgamma(s)
if i == 7 {
z *= (y + 6)
z *= (y + 5)
z *= (y + 4)
z *= (y + 3)
z *= (y + 2)
lgamma += log(z)
} else if i == 6 {
z *= (y + 5)
z *= (y + 4)
z *= (y + 3)
z *= (y + 2)
lgamma += log(z)
} else if i == 5 {
z *= (y + 4)
z *= (y + 3)
z *= (y + 2)
lgamma += log(z)
} else if i == 4 {
z *= (y + 3)
z *= (y + 2)
lgamma += log(z)
} else if i == 3 {
z *= (y + 2)
lgamma += log(z)
}
} else if x < two58 { // 8 <= x < 2**58
t := log(x)
z := 1.0 / x
y := z * z
w := lgamma_w[0] + z * (lgamma_w[1] + y * (lgamma_w[2] + y * (lgamma_w[3] +
y * (lgamma_w[4] + y * (lgamma_w[5] + y * lgamma_w[6])))))
lgamma = (x - 0.5) * (t - 1.0) + w
} else { // 2**58 <= x <= Inf
lgamma = x * (log(x) - 1.0)
}
if neg {
lgamma = nadj - lgamma
}
return lgamma, sign
}
// sin_pi(x) is a helper function for negative x
fn sin_pi(x_ f64) f64 {
mut x := x_
two52 := exp2(52) // 0x4330000000000000 ~4.5036e+15
two53 := exp2(53) // 0x4340000000000000 ~9.0072e+15
if x < 0.25 {
return -sin(pi * x)
}
// argument reduction
mut z := floor(x)
mut n := 0
if z != x { // inexact
x = mod(x, 2)
n = int(x * 4)
} else {
if x >= two53 { // x must be even
x = 0
n = 0
} else {
if x < two52 {
z = x + two52 // exact
}
n = 1 & int(f64_bits(z))
x = f64(n)
n <<= 2
}
}
if n == 0 {
x = sin(pi * x)
} else if n == 1 || n == 2 {
x = cos(pi * (0.5 - x))
} else if n == 3 || n == 4 {
x = sin(pi * (1.0 - x))
} else if n == 5 || n == 6 {
x = -cos(pi * (x - 1.5))
} else {
x = sin(pi * (x - 2))
}
return -x
}

View File

@ -0,0 +1,163 @@
module math
const (
gamma_p = [
1.60119522476751861407e-04,
1.19135147006586384913e-03,
1.04213797561761569935e-02,
4.76367800457137231464e-02,
2.07448227648435975150e-01,
4.94214826801497100753e-01,
9.99999999999999996796e-01,
]
gamma_q = [
-2.31581873324120129819e-05,
5.39605580493303397842e-04,
-4.45641913851797240494e-03,
1.18139785222060435552e-02,
3.58236398605498653373e-02,
-2.34591795718243348568e-01,
7.14304917030273074085e-02,
1.00000000000000000320e+00,
]
gamma_s = [
7.87311395793093628397e-04,
-2.29549961613378126380e-04,
-2.68132617805781232825e-03,
3.47222221605458667310e-03,
8.33333333333482257126e-02,
]
lgamma_a = [
// 0x3FB3C467E37DB0C8
7.72156649015328655494e-02,
// 0x3FD4A34CC4A60FAD
3.22467033424113591611e-01,
// 0x3FB13E001A5562A7
6.73523010531292681824e-02,
// 0x3F951322AC92547B
2.05808084325167332806e-02,
// 0x3F7E404FB68FEFE8
7.38555086081402883957e-03,
// 0x3F67ADD8CCB7926B
2.89051383673415629091e-03,
// 0x3F538A94116F3F5D
1.19270763183362067845e-03,
// 0x3F40B6C689B99C00
5.10069792153511336608e-04,
// 0x3F2CF2ECED10E54D
2.20862790713908385557e-04,
// 0x3F1C5088987DFB07
1.08011567247583939954e-04,
// 0x3EFA7074428CFA52
2.52144565451257326939e-05,
// 0x3F07858E90A45837
4.48640949618915160150e-05,
]
lgamma_r = [
// placeholder
1.0,
// 0x3FF645A762C4AB74
1.39200533467621045958e+00,
// 0x3FE71A1893D3DCDC
7.21935547567138069525e-01,
// 0x3FC601EDCCFBDF27
1.71933865632803078993e-01,
// 0x3F9317EA742ED475
1.86459191715652901344e-02,
// 0x3F497DDACA41A95B
7.77942496381893596434e-04,
// 0x3EDEBAF7A5B38140
7.32668430744625636189e-06,
]
lgamma_s = [
// 0xBFB3C467E37DB0C8
-7.72156649015328655494e-02,
// 0x3FCB848B36E20878
2.14982415960608852501e-01,
// 0x3FD4D98F4F139F59
3.25778796408930981787e-01,
// 0x3FC2BB9CBEE5F2F7
1.46350472652464452805e-01,
// 0x3F9B481C7E939961
2.66422703033638609560e-02,
// 0x3F5E26B67368F239
1.84028451407337715652e-03,
// 0x3F00BFECDD17E945
3.19475326584100867617e-05,
]
lgamma_t = [
// 0x3FDEF72BC8EE38A2
4.83836122723810047042e-01,
// 0xBFC2E4278DC6C509
-1.47587722994593911752e-01,
// 0x3FB08B4294D5419B
6.46249402391333854778e-02,
// 0xBFA0C9A8DF35B713
-3.27885410759859649565e-02,
// 0x3F9266E7970AF9EC
1.79706750811820387126e-02,
// 0xBF851F9FBA91EC6A
-1.03142241298341437450e-02,
// 0x3F78FCE0E370E344
6.10053870246291332635e-03,
// 0xBF6E2EFFB3E914D7
-3.68452016781138256760e-03,
// 0x3F6282D32E15C915
2.25964780900612472250e-03,
// 0xBF56FE8EBF2D1AF1
-1.40346469989232843813e-03,
// 0x3F4CDF0CEF61A8E9
8.81081882437654011382e-04,
// 0xBF41A6109C73E0EC
-5.38595305356740546715e-04,
// 0x3F34AF6D6C0EBBF7
3.15632070903625950361e-04,
// 0xBF347F24ECC38C38
-3.12754168375120860518e-04,
// 0x3F35FD3EE8C2D3F4
3.35529192635519073543e-04,
]
lgamma_u = [
// 0xBFB3C467E37DB0C8
-7.72156649015328655494e-02,
// 0x3FE4401E8B005DFF
6.32827064025093366517e-01,
// 0x3FF7475CD119BD6F
1.45492250137234768737e+00,
// 0x3FEF497644EA8450
9.77717527963372745603e-01,
// 0x3FCD4EAEF6010924
2.28963728064692451092e-01,
// 0x3F8B678BBF2BAB09
1.33810918536787660377e-02,
]
lgamma_v = [
1.0,
// 0x4003A5D7C2BD619C
2.45597793713041134822e+00,
// 0x40010725A42B18F5
2.12848976379893395361e+00,
// 0x3FE89DFBE45050AF
7.69285150456672783825e-01,
// 0x3FBAAE55D6537C88
1.04222645593369134254e-01,
// 0x3F6A5ABB57D0CF61
3.21709242282423911810e-03,
]
lgamma_w = [
// 0x3FDACFE390C97D69
4.18938533204672725052e-01,
// 0x3FB555555555553B
8.33333333333329678849e-02,
// 0xBF66C16C16B02E5C
-2.77777777728775536470e-03,
// 0x3F4A019F98CF38B6
7.93650558643019558500e-04,
// 0xBF4380CB8C0FE741
-5.95187557450339963135e-04,
// 0x3F4B67BA4CDAD5D1
8.36339918996282139126e-04,
// 0xBF5AB89D0B9E43E4
-1.63092934096575273989e-03,
]
)

View File

@ -0,0 +1,9 @@
module math
fn C.hypot(x f64, y f64) f64
// Returns hypotenuse of a right triangle.
[inline]
pub fn hypot(x f64, y f64) f64 {
return C.hypot(x, y)
}

24
vlib/math/hypot.v 100644
View File

@ -0,0 +1,24 @@
module math
pub fn hypot(x f64, y f64) f64 {
if is_inf(x, 0) || is_inf(y, 0) {
return inf(1)
}
if is_nan(x) || is_nan(y) {
return nan()
}
mut result := 0.0
if x != 0.0 || y != 0.0 {
abs_x := abs(x)
abs_y := abs(y)
min, max := minmax(abs_x, abs_y)
rat := min / max
root_term := sqrt(1.0 + rat * rat)
if max < max_f64 / root_term {
result = max * root_term
} else {
panic('overflow in hypot_e function')
}
}
return result
}

View File

@ -0,0 +1,58 @@
module internal
// contants to do fine tuning of precision for the functions
// implemented in pure V
pub const (
f64_epsilon = 2.2204460492503131e-16
sqrt_f64_epsilon = 1.4901161193847656e-08
root3_f64_epsilon = 6.0554544523933429e-06
root4_f64_epsilon = 1.2207031250000000e-04
root5_f64_epsilon = 7.4009597974140505e-04
root6_f64_epsilon = 2.4607833005759251e-03
log_f64_epsilon = -3.6043653389117154e+01
f64_min = 2.2250738585072014e-308
sqrt_f64_min = 1.4916681462400413e-154
root3_f64_min = 2.8126442852362996e-103
root4_f64_min = 1.2213386697554620e-77
root5_f64_min = 2.9476022969691763e-62
root6_f64_min = 5.3034368905798218e-52
log_f64_min = -7.0839641853226408e+02
f64_max = 1.7976931348623157e+308
sqrt_f64_max = 1.3407807929942596e+154
root3_f64_max = 5.6438030941222897e+102
root4_f64_max = 1.1579208923731620e+77
root5_f64_max = 4.4765466227572707e+61
root6_f64_max = 2.3756689782295612e+51
log_f64_max = 7.0978271289338397e+02
f32_epsilon = 1.1920928955078125e-07
sqrt_f32_epsilon = 3.4526698300124393e-04
root3_f32_epsilon = 4.9215666011518501e-03
root4_f32_epsilon = 1.8581361171917516e-02
root5_f32_epsilon = 4.1234622211652937e-02
root6_f32_epsilon = 7.0153878019335827e-02
log_f32_epsilon = -1.5942385152878742e+01
f32_min = 1.1754943508222875e-38
sqrt_f32_min = 1.0842021724855044e-19
root3_f32_min = 2.2737367544323241e-13
root4_f32_min = 3.2927225399135965e-10
root5_f32_min = 2.5944428542140822e-08
root6_f32_min = 4.7683715820312542e-07
log_f32_min = -8.7336544750553102e+01
f32_max = 3.4028234663852886e+38
sqrt_f32_max = 1.8446743523953730e+19
root3_f32_max = 6.9814635196223242e+12
root4_f32_max = 4.2949672319999986e+09
root5_f32_max = 5.0859007855960041e+07
root6_f32_max = 2.6422459233807749e+06
log_f32_max = 8.8722839052068352e+01
sflt_epsilon = 4.8828125000000000e-04
sqrt_sflt_epsilon = 2.2097086912079612e-02
root3_sflt_epsilon = 7.8745065618429588e-02
root4_sflt_epsilon = 1.4865088937534013e-01
root5_sflt_epsilon = 2.1763764082403100e-01
root6_sflt_epsilon = 2.8061551207734325e-01
log_sflt_epsilon = -7.6246189861593985e+00
max_int_fact_arg = 170
max_f64_fact_arg = 171.0
max_long_f64_fact_arg = 1755.5
)

51
vlib/math/invhyp.v 100644
View File

@ -0,0 +1,51 @@
module math
import math.internal
pub fn acosh(x f64) f64 {
if x == 0.0 {
return 0.0
} else if x > 1.0 / internal.sqrt_f64_epsilon {
return log(x) + pi * 2
} else if x > 2.0 {
return log(2.0 * x - 1.0 / (sqrt(x * x - 1.0) + x))
} else if x > 1.0 {
t := x - 1.0
return log1p(t + sqrt(2.0 * t + t * t))
} else if x == 1.0 {
return 0.0
} else {
return nan()
}
}
pub fn asinh(x f64) f64 {
a := abs(x)
s := if x < 0 { -1.0 } else { 1.0 }
if a > 1.0 / internal.sqrt_f64_epsilon {
return s * (log(a) + pi * 2.0)
} else if a > 2.0 {
return s * log(2.0 * a + 1.0 / (a + sqrt(a * a + 1.0)))
} else if a > internal.sqrt_f64_epsilon {
a2 := a * a
return s * log1p(a + a2 / (1.0 + sqrt(1.0 + a2)))
} else {
return x
}
}
pub fn atanh(x f64) f64 {
a := abs(x)
s := if x < 0 { -1.0 } else { 1.0 }
if a > 1.0 {
return nan()
} else if a == 1.0 {
return if x < 0 { inf(-1) } else { inf(1) }
} else if a >= 0.5 {
return s * 0.5 * log1p(2.0 * a / (1.0 - a))
} else if a > internal.f64_epsilon {
return s * 0.5 * log1p(2.0 * a + 2.0 * a * a / (1.0 - a))
} else {
return x
}
}

View File

@ -0,0 +1,33 @@
module math
fn C.acos(x f64) f64
fn C.asin(x f64) f64
fn C.atan(x f64) f64
fn C.atan2(y f64, x f64) f64
// acos calculates inverse cosine (arccosine).
[inline]
pub fn acos(a f64) f64 {
return C.acos(a)
}
// asin calculates inverse sine (arcsine).
[inline]
pub fn asin(a f64) f64 {
return C.asin(a)
}
// atan calculates inverse tangent (arctangent).
[inline]
pub fn atan(a f64) f64 {
return C.atan(a)
}
// atan2 calculates inverse tangent with two arguments, returns the angle between the X axis and the point.
[inline]
pub fn atan2(a f64, b f64) f64 {
return C.atan2(a, b)
}

View File

@ -0,0 +1,33 @@
module math
fn JS.Math.acos(x f64) f64
fn JS.Math.asin(x f64) f64
fn JS.Math.atan(x f64) f64
fn JS.Math.atan2(y f64, x f64) f64
// acos calculates inverse cosine (arccosine).
[inline]
pub fn acos(a f64) f64 {
return JS.Math.acos(a)
}
// asin calculates inverse sine (arcsine).
[inline]
pub fn asin(a f64) f64 {
return JS.Math.asin(a)
}
// atan calculates inverse tangent (arctangent).
[inline]
pub fn atan(a f64) f64 {
return JS.Math.atan(a)
}
// atan2 calculates inverse tangent with two arguments, returns the angle between the X axis and the point.
[inline]
pub fn atan2(a f64, b f64) f64 {
return JS.Math.atan2(a, b)
}

219
vlib/math/invtrig.v 100644
View File

@ -0,0 +1,219 @@
module math
// The original C code, the long comment, and the constants below were
// from http://netlib.sandia.gov/cephes/cmath/atan.c, available from
// http://www.netlib.org/cephes/ctgz.
// The go code is a version of the original C.
//
// atan.c
// Inverse circular tangent (arctangent)
//
// SYNOPSIS:
// double x, y, atan()
// y = atan( x )
//
// DESCRIPTION:
// Returns radian angle between -pi/2.0 and +pi/2.0 whose tangent is x.
//
// Range reduction is from three intervals into the interval from zero to 0.66.
// The approximant uses a rational function of degree 4/5 of the form
// x + x**3 P(x)/Q(x).
//
// ACCURACY:
// Relative error:
// arithmetic domain # trials peak rms
// DEC -10, 10 50000 2.4e-17 8.3e-18
// IEEE -10, 10 10^6 1.8e-16 5.0e-17
//
// Cephes Math Library Release 2.8: June, 2000
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
//
// The readme file at http://netlib.sandia.gov/cephes/ says:
// Some software in this archive may be from the book _Methods and
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
// International, 1989) or from the Cephes Mathematical Library, a
// commercial product. In either event, it is copyrighted by the author.
// What you see here may be used freely but it comes with no support or
// guarantee.
//
// The two known misprints in the book are repaired here in the
// source listings for the gamma function and the incomplete beta
// integral.
//
// Stephen L. Moshier
// moshier@na-net.ornl.gov
// pi/2.0 = PIO2 + morebits
// tan3pio8 = tan(3*pi/8)
const (
morebits = 6.123233995736765886130e-17
tan3pio8 = 2.41421356237309504880
)
// xatan evaluates a series valid in the range [0, 0.66].
[inline]
fn xatan(x f64) f64 {
xatan_p0 := -8.750608600031904122785e-01
xatan_p1 := -1.615753718733365076637e+01
xatan_p2 := -7.500855792314704667340e+01
xatan_p3 := -1.228866684490136173410e+02
xatan_p4 := -6.485021904942025371773e+01
xatan_q0 := 2.485846490142306297962e+01
xatan_q1 := 1.650270098316988542046e+02
xatan_q2 := 4.328810604912902668951e+02
xatan_q3 := 4.853903996359136964868e+02
xatan_q4 := 1.945506571482613964425e+02
mut z := x * x
z = z * ((((xatan_p0 * z + xatan_p1) * z + xatan_p2) * z + xatan_p3) * z + xatan_p4) / (((((z +
xatan_q0) * z + xatan_q1) * z + xatan_q2) * z + xatan_q3) * z + xatan_q4)
z = x * z + x
return z
}
// satan reduces its argument (known to be positive)
// to the range [0, 0.66] and calls xatan.
[inline]
fn satan(x f64) f64 {
if x <= 0.66 {
return xatan(x)
}
if x > math.tan3pio8 {
return pi / 2.0 - xatan(1.0 / x) + f64(math.morebits)
}
return pi / 4 + xatan((x - 1.0) / (x + 1.0)) + 0.5 * f64(math.morebits)
}
// atan returns the arctangent, in radians, of x.
//
// special cases are:
// atan(±0) = ±0
// atan(±inf) = ±pi/2.0
pub fn atan(x f64) f64 {
if x == 0 {
return x
}
if x > 0 {
return satan(x)
}
return -satan(-x)
}
// atan2 returns the arc tangent of y/x, using
// the signs of the two to determine the quadrant
// of the return value.
//
// special cases are (in order):
// atan2(y, nan) = nan
// atan2(nan, x) = nan
// atan2(+0, x>=0) = +0
// atan2(-0, x>=0) = -0
// atan2(+0, x<=-0) = +pi
// atan2(-0, x<=-0) = -pi
// atan2(y>0, 0) = +pi/2.0
// atan2(y<0, 0) = -pi/2.0
// atan2(+inf, +inf) = +pi/4
// atan2(-inf, +inf) = -pi/4
// atan2(+inf, -inf) = 3pi/4
// atan2(-inf, -inf) = -3pi/4
// atan2(y, +inf) = 0
// atan2(y>0, -inf) = +pi
// atan2(y<0, -inf) = -pi
// atan2(+inf, x) = +pi/2.0
// atan2(-inf, x) = -pi/2.0
pub fn atan2(y f64, x f64) f64 {
// special cases
if is_nan(y) || is_nan(x) {
return nan()
}
if y == 0.0 {
if x >= 0 && !signbit(x) {
return copysign(0, y)
}
return copysign(pi, y)
}
if x == 0.0 {
return copysign(pi / 2.0, y)
}
if is_inf(x, 0) {
if is_inf(x, 1) {
if is_inf(y, 0) {
return copysign(pi / 4, y)
}
return copysign(0, y)
}
if is_inf(y, 0) {
return copysign(3.0 * pi / 4.0, y)
}
return copysign(pi, y)
}
if is_inf(y, 0) {
return copysign(pi / 2.0, y)
}
// Call atan and determine the quadrant.
q := atan(y / x)
if x < 0 {
if q <= 0 {
return q + pi
}
return q - pi
}
return q
}
/*
Floating-point arcsine and arccosine.
They are implemented by computing the arctangent
after appropriate range reduction.
*/
// asin returns the arcsine, in radians, of x.
//
// special cases are:
// asin(±0) = ±0
// asin(x) = nan if x < -1 or x > 1
pub fn asin(x_ f64) f64 {
mut x := x_
if x == 0.0 {
return x // special case
}
mut sign := false
if x < 0.0 {
x = -x
sign = true
}
if x > 1.0 {
return nan() // special case
}
mut temp := sqrt(1.0 - x * x)
if x > 0.7 {
temp = pi / 2.0 - satan(temp / x)
} else {
temp = satan(x / temp)
}
if sign {
temp = -temp
}
return temp
}
// acos returns the arccosine, in radians, of x.
//
// special case is:
// acos(x) = nan if x < -1 or x > 1
[inline]
pub fn acos(x f64) f64 {
if (x < -1.0) || (x > 1.0) {
return nan()
}
if x == 0.0 {
return nan()
}
if x > 0.5 {
return f64(2.0) * asin(sqrt(0.5 - 0.5 * x))
}
mut z := pi / f64(4.0) - asin(x)
z = z + math.morebits
z = z + pi / f64(4.0)
return z
}

25
vlib/math/log.c.v 100644
View File

@ -0,0 +1,25 @@
module math
fn C.log(x f64) f64
fn C.log2(x f64) f64
fn C.log10(x f64) f64
// log calculates natural (base-e) logarithm of the provided value.
[inline]
pub fn log(x f64) f64 {
return C.log(x)
}
// log2 calculates base-2 logarithm of the provided value.
[inline]
pub fn log2(x f64) f64 {
return C.log2(x)
}
// log10 calculates the common (base-10) logarithm of the provided value.
[inline]
pub fn log10(x f64) f64 {
return C.log10(x)
}

View File

@ -0,0 +1,9 @@
module math
fn JS.Math.log(x f64) f64
// log calculates natural (base-e) logarithm of the provided value.
[inline]
pub fn log(x f64) f64 {
return JS.Math.log(x)
}

76
vlib/math/log.v 100644
View File

@ -0,0 +1,76 @@
module math
pub fn log_n(x f64, b f64) f64 {
y := log(x)
z := log(b)
return y / z
}
// log10 returns the decimal logarithm of x.
// The special cases are the same as for log.
pub fn log10(x f64) f64 {
return log(x) * (1.0 / ln10)
}
// log2 returns the binary logarithm of x.
// The special cases are the same as for log.
pub fn log2(x f64) f64 {
frac, exp := frexp(x)
// Make sure exact powers of two give an exact answer.
// Don't depend on log(0.5)*(1/ln2)+exp being exactly exp-1.
if frac == 0.5 {
return f64(exp - 1)
}
return log(frac) * (1.0 / ln2) + f64(exp)
}
pub fn log1p(x f64) f64 {
y := 1.0 + x
z := y - 1.0
return log(y) - (z - x) / y // cancels errors with IEEE arithmetic
}
// log_b returns the binary exponent of x.
//
// special cases are:
// log_b(±inf) = +inf
// log_b(0) = -inf
// log_b(nan) = nan
pub fn log_b(x f64) f64 {
if x == 0 {
return inf(-1)
}
if is_inf(x, 0) {
return inf(1)
}
if is_nan(x) {
return x
}
return f64(ilog_b_(x))
}
// ilog_b returns the binary exponent of x as an integer.
//
// special cases are:
// ilog_b(±inf) = max_i32
// ilog_b(0) = min_i32
// ilog_b(nan) = max_i32
pub fn ilog_b(x f64) int {
if x == 0 {
return min_i32
}
if is_nan(x) {
return max_i32
}
if is_inf(x, 0) {
return max_i32
}
return ilog_b_(x)
}
// ilog_b returns the binary exponent of x. It assumes x is finite and
// non-zero.
fn ilog_b_(x_ f64) int {
x, exp := normalize(x_)
return int((f64_bits(x) >> shift) & mask) - bias + exp
}

View File

@ -12,287 +12,3 @@ $if windows {
} $else {
#flag -lm
}
fn C.acos(x f64) f64
fn C.asin(x f64) f64
fn C.atan(x f64) f64
fn C.atan2(y f64, x f64) f64
fn C.cbrt(x f64) f64
fn C.ceil(x f64) f64
fn C.cos(x f64) f64
fn C.cosf(x f32) f32
fn C.cosh(x f64) f64
fn C.erf(x f64) f64
fn C.erfc(x f64) f64
fn C.exp(x f64) f64
fn C.exp2(x f64) f64
fn C.fabs(x f64) f64
fn C.floor(x f64) f64
fn C.fmod(x f64, y f64) f64
fn C.hypot(x f64, y f64) f64
fn C.log(x f64) f64
fn C.log2(x f64) f64
fn C.log10(x f64) f64
fn C.lgamma(x f64) f64
fn C.pow(x f64, y f64) f64
fn C.powf(x f32, y f32) f32
fn C.round(x f64) f64
fn C.sin(x f64) f64
fn C.sinf(x f32) f32
fn C.sinh(x f64) f64
fn C.sqrt(x f64) f64
fn C.sqrtf(x f32) f32
fn C.tgamma(x f64) f64
fn C.tan(x f64) f64
fn C.tanf(x f32) f32
fn C.tanh(x f64) f64
fn C.trunc(x f64) f64
// NOTE
// When adding a new function, please make sure it's in the right place.
// All functions are sorted alphabetically.
// Returns the absolute value.
[inline]
pub fn abs(a f64) f64 {
return C.fabs(a)
}
// acos calculates inverse cosine (arccosine).
[inline]
pub fn acos(a f64) f64 {
return C.acos(a)
}
// asin calculates inverse sine (arcsine).
[inline]
pub fn asin(a f64) f64 {
return C.asin(a)
}
// atan calculates inverse tangent (arctangent).
[inline]
pub fn atan(a f64) f64 {
return C.atan(a)
}
// atan2 calculates inverse tangent with two arguments, returns the angle between the X axis and the point.
[inline]
pub fn atan2(a f64, b f64) f64 {
return C.atan2(a, b)
}
// cbrt calculates cubic root.
[inline]
pub fn cbrt(a f64) f64 {
return C.cbrt(a)
}
// ceil returns the nearest f64 greater or equal to the provided value.
[inline]
pub fn ceil(a f64) f64 {
return C.ceil(a)
}
// cos calculates cosine.
[inline]
pub fn cos(a f64) f64 {
return C.cos(a)
}
// cosf calculates cosine. (float32)
[inline]
pub fn cosf(a f32) f32 {
return C.cosf(a)
}
// cosh calculates hyperbolic cosine.
[inline]
pub fn cosh(a f64) f64 {
return C.cosh(a)
}
// exp calculates exponent of the number (math.pow(math.E, a)).
[inline]
pub fn exp(a f64) f64 {
return C.exp(a)
}
/*
// erf computes the error function value
[inline]
pub fn erf(a f64) f64 {
return C.erf(a)
}
*/
/*
// erfc computes the complementary error function value
[inline]
pub fn erfc(a f64) f64 {
return C.erfc(a)
}
*/
// exp2 returns the base-2 exponential function of a (math.pow(2, a)).
[inline]
pub fn exp2(a f64) f64 {
return C.exp2(a)
}
// floor returns the nearest f64 lower or equal of the provided value.
[inline]
pub fn floor(a f64) f64 {
return C.floor(a)
}
// fmod returns the floating-point remainder of number / denom (rounded towards zero):
[inline]
pub fn fmod(a f64, b f64) f64 {
return C.fmod(a, b)
}
// gamma computes the gamma function value
[inline]
pub fn gamma(a f64) f64 {
return C.tgamma(a)
}
// Returns hypotenuse of a right triangle.
[inline]
pub fn hypot(a f64, b f64) f64 {
return C.hypot(a, b)
}
// log calculates natural (base-e) logarithm of the provided value.
[inline]
pub fn log(a f64) f64 {
return C.log(a)
}
// log2 calculates base-2 logarithm of the provided value.
[inline]
pub fn log2(a f64) f64 {
return C.log2(a)
}
// log10 calculates the common (base-10) logarithm of the provided value.
[inline]
pub fn log10(a f64) f64 {
return C.log10(a)
}
// log_gamma computes the log-gamma function value
[inline]
pub fn log_gamma(a f64) f64 {
return C.lgamma(a)
}
// log_n calculates base-N logarithm of the provided value.
[inline]
pub fn log_n(a f64, b f64) f64 {
return C.log(a) / C.log(b)
}
// pow returns base raised to the provided power.
[inline]
pub fn pow(a f64, b f64) f64 {
return C.pow(a, b)
}
// powf returns base raised to the provided power. (float32)
[inline]
pub fn powf(a f32, b f32) f32 {
return C.powf(a, b)
}
// round returns the integer nearest to the provided value.
[inline]
pub fn round(f f64) f64 {
return C.round(f)
}
// sin calculates sine.
[inline]
pub fn sin(a f64) f64 {
return C.sin(a)
}
// sinf calculates sine. (float32)
[inline]
pub fn sinf(a f32) f32 {
return C.sinf(a)
}
// sinh calculates hyperbolic sine.
[inline]
pub fn sinh(a f64) f64 {
return C.sinh(a)
}
// sqrt calculates square-root of the provided value.
[inline]
pub fn sqrt(a f64) f64 {
return C.sqrt(a)
}
// sqrtf calculates square-root of the provided value. (float32)
[inline]
pub fn sqrtf(a f32) f32 {
return C.sqrtf(a)
}
// tan calculates tangent.
[inline]
pub fn tan(a f64) f64 {
return C.tan(a)
}
// tanf calculates tangent. (float32)
[inline]
pub fn tanf(a f32) f32 {
return C.tanf(a)
}
// tanh calculates hyperbolic tangent.
[inline]
pub fn tanh(a f64) f64 {
return C.tanh(a)
}
// trunc rounds a toward zero, returning the nearest integral value that is not
// larger in magnitude than a.
[inline]
pub fn trunc(a f64) f64 {
return C.trunc(a)
}

View File

@ -1,281 +0,0 @@
// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module math
// TODO : The commented out functions need either a native V implementation, a
// JS specific implementation, or use some other JS math library, such as
// https://github.com/josdejong/mathjs
// Replaces C.fabs
fn JS.Math.abs(x f64) f64
fn JS.Math.acos(x f64) f64
fn JS.Math.asin(x f64) f64
fn JS.Math.atan(x f64) f64
fn JS.Math.atan2(y f64, x f64) f64
fn JS.Math.cbrt(x f64) f64
fn JS.Math.ceil(x f64) f64
fn JS.Math.cos(x f64) f64
fn JS.Math.cosh(x f64) f64
// fn JS.Math.erf(x f64) f64 // Not in standard JS Math object
// fn JS.Math.erfc(x f64) f64 // Not in standard JS Math object
fn JS.Math.exp(x f64) f64
// fn JS.Math.exp2(x f64) f64 // Not in standard JS Math object
fn JS.Math.floor(x f64) f64
// fn JS.Math.fmod(x f64, y f64) f64 // Not in standard JS Math object
// fn JS.Math.hypot(x f64, y f64) f64 // Not in standard JS Math object
fn JS.Math.log(x f64) f64
// fn JS.Math.log2(x f64) f64 // Not in standard JS Math object
// fn JS.Math.log10(x f64) f64 // Not in standard JS Math object
// fn JS.Math.lgamma(x f64) f64 // Not in standard JS Math object
fn JS.Math.pow(x f64, y f64) f64
fn JS.Math.round(x f64) f64
fn JS.Math.sin(x f64) f64
fn JS.Math.sinh(x f64) f64
fn JS.Math.sqrt(x f64) f64
// fn JS.Math.tgamma(x f64) f64 // Not in standard JS Math object
fn JS.Math.tan(x f64) f64
fn JS.Math.tanh(x f64) f64
fn JS.Math.trunc(x f64) f64
// NOTE
// When adding a new function, please make sure it's in the right place.
// All functions are sorted alphabetically.
// Returns the absolute value.
[inline]
pub fn abs(a f64) f64 {
return JS.Math.abs(a)
}
// acos calculates inverse cosine (arccosine).
[inline]
pub fn acos(a f64) f64 {
return JS.Math.acos(a)
}
// asin calculates inverse sine (arcsine).
[inline]
pub fn asin(a f64) f64 {
return JS.Math.asin(a)
}
// atan calculates inverse tangent (arctangent).
[inline]
pub fn atan(a f64) f64 {
return JS.Math.atan(a)
}
// atan2 calculates inverse tangent with two arguments, returns the angle between the X axis and the point.
[inline]
pub fn atan2(a f64, b f64) f64 {
return JS.Math.atan2(a, b)
}
// cbrt calculates cubic root.
[inline]
pub fn cbrt(a f64) f64 {
return JS.Math.cbrt(a)
}
// ceil returns the nearest f64 greater or equal to the provided value.
[inline]
pub fn ceil(a f64) f64 {
return JS.Math.ceil(a)
}
// cos calculates cosine.
[inline]
pub fn cos(a f64) f64 {
return JS.Math.cos(a)
}
// cosf calculates cosine. (float32). This doesn't exist in JS
[inline]
pub fn cosf(a f32) f32 {
return f32(JS.Math.cos(a))
}
// cosh calculates hyperbolic cosine.
[inline]
pub fn cosh(a f64) f64 {
return JS.Math.cosh(a)
}
// exp calculates exponent of the number (math.pow(math.E, a)).
[inline]
pub fn exp(a f64) f64 {
mut res := 0.0
#res.val = Math.exp(a)
return res
}
// exp2 returns the base-2 exponential function of a (math.pow(2, a)).
[inline]
pub fn exp2(a f64) f64 {
return 0
// return JS.Math.exp2(a)
}
// floor returns the nearest f64 lower or equal of the provided value.
[inline]
pub fn floor(a f64) f64 {
return JS.Math.floor(a)
}
// fmod returns the floating-point remainder of number / denom (rounded towards zero):
[inline]
pub fn fmod(x f64, y f64) f64 {
#let tmp
#let tmp2
#let p = 0
#let pY = 0
#let l = 0.0
#let l2 = 0.0
#tmp = x.toExponential().match(/^.\.?(.*)e(.+)$/)
#p = parseInt(tmp[2], 10) - (tmp[1] + '').length
#tmp = y.toExponential().match(/^.\.?(.*)e(.+)$/)
#pY = parseInt(tmp[2], 10) - (tmp[1] + '').length
#if (pY > p) {
#p = pY
#}
#tmp2 = (x % y)
#if (p < -100 || p > 20) {
// toFixed will give an out of bound error so we fix it like this:
#l = Math.round(Math.log(tmp2) / Math.log(10))
#l2 = Math.pow(10, l)
#return new builtin.f64((tmp2 / l2).toFixed(l - p) * l2)
#} else {
#return new builtin.f64(parseFloat(tmp2.toFixed(-p)))
#}
return 0.0
// return JS.Math.fmod(a, b)
}
// gamma computes the gamma function value
[inline]
pub fn gamma(a f64) f64 {
return 0
// return JS.Math.tgamma(a)
}
// Returns hypotenuse of a right triangle.
[inline]
pub fn hypot(a f64, b f64) f64 {
return 0
// return JS.Math.hypot(a, b)
}
// log calculates natural (base-e) logarithm of the provided value.
[inline]
pub fn log(a f64) f64 {
return JS.Math.log(a)
}
// log2 calculates base-2 logarithm of the provided value.
[inline]
pub fn log2(a f64) f64 {
return 0
// return JS.Math.log2(a)
}
// log10 calculates the common (base-10) logarithm of the provided value.
[inline]
pub fn log10(a f64) f64 {
return 0.0
// return JS.Math.log10(a)
}
// log_gamma computes the log-gamma function value
[inline]
pub fn log_gamma(a f64) f64 {
return 0
// return JS.Math.lgamma(a)
}
// log_n calculates base-N logarithm of the provided value.
[inline]
pub fn log_n(a f64, b f64) f64 {
return JS.Math.log(a) / JS.Math.log(b)
}
// pow returns base raised to the provided power.
[inline]
pub fn pow(a f64, b f64) f64 {
return JS.Math.pow(a, b)
}
// powf returns base raised to the provided power. (float32)
[inline]
pub fn powf(a f32, b f32) f32 {
return f32(JS.Math.pow(a, b))
}
// round returns the integer nearest to the provided value.
[inline]
pub fn round(f f64) f64 {
return JS.Math.round(f)
}
// sin calculates sine.
[inline]
pub fn sin(a f64) f64 {
return JS.Math.sin(a)
}
// sinf calculates sine. (float32)
[inline]
pub fn sinf(a f32) f32 {
return f32(JS.Math.sin(a))
}
// sinh calculates hyperbolic sine.
[inline]
pub fn sinh(a f64) f64 {
return JS.Math.sinh(a)
}
// sqrt calculates square-root of the provided value.
[inline]
pub fn sqrt(a f64) f64 {
return JS.Math.sqrt(a)
}
// sqrtf calculates square-root of the provided value. (float32)
[inline]
pub fn sqrtf(a f32) f32 {
return f32(JS.Math.sqrt(a))
}
// tan calculates tangent.
[inline]
pub fn tan(a f64) f64 {
return JS.Math.tan(a)
}
// tanf calculates tangent. (float32)
[inline]
pub fn tanf(a f32) f32 {
return f32(JS.Math.tan(a))
}
// tanh calculates hyperbolic tangent.
[inline]
pub fn tanh(a f64) f64 {
return JS.Math.tanh(a)
}
// trunc rounds a toward zero, returning the nearest integral value that is not
// larger in magnitude than a.
[inline]
pub fn trunc(a f64) f64 {
return JS.Math.trunc(a)
}

View File

@ -61,61 +61,6 @@ pub fn digits(_n int, base int) []int {
return res
}
[inline]
pub fn fabs(x f64) f64 {
if x < 0.0 {
return -x
}
return x
}
// gcd calculates greatest common (positive) divisor (or zero if a and b are both zero).
pub fn gcd(a_ i64, b_ i64) i64 {
mut a := a_
mut b := b_
if a < 0 {
a = -a
}
if b < 0 {
b = -b
}
for b != 0 {
a %= b
if a == 0 {
return b
}
b %= a
}
return a
}
// egcd returns (gcd(a, b), x, y) such that |a*x + b*y| = gcd(a, b)
pub fn egcd(a i64, b i64) (i64, i64, i64) {
mut old_r, mut r := a, b
mut old_s, mut s := i64(1), i64(0)
mut old_t, mut t := i64(0), i64(1)
for r != 0 {
quot := old_r / r
old_r, r = r, old_r % r
old_s, s = s, old_s - quot * s
old_t, t = t, old_t - quot * t
}
return if old_r < 0 { -old_r } else { old_r }, old_s, old_t
}
// lcm calculates least common (non-negative) multiple.
pub fn lcm(a i64, b i64) i64 {
if a == 0 {
return a
}
res := a * (b / gcd(b, a))
if res < 0 {
return -res
}
return res
}
// max returns the maximum value of the two provided.
[inline]
pub fn max(a f64, b f64) f64 {
@ -134,6 +79,14 @@ pub fn min(a f64, b f64) f64 {
return b
}
// minmax returns the minimum and maximum value of the two provided.
pub fn minmax(a f64, b f64) (f64, f64) {
if a < b {
return a, b
}
return b, a
}
// sign returns the corresponding sign -1.0, 1.0 of the provided number.
// if n is not a number, its sign is nan too.
[inline]
@ -201,3 +154,16 @@ pub fn alike(a f64, b f64) bool {
}
return false
}
fn is_odd_int(x f64) bool {
xi, xf := modf(x)
return xf == 0 && (i64(xi) & 1) == 1
}
fn is_neg_int(x f64) bool {
if x < 0 {
_, xf := modf(x)
return xf == 0
}
return false
}

View File

@ -21,16 +21,31 @@ const (
2.7053008467824138592616927e-01, 1.2738121680361776018155625e+00,
1.0205369421140629186287407e+00, 1.2945003481781246062157835e+00,
1.3872364345374451433846657e+00, 2.6231510803970463967294145e+00]
acosh_ = [f64(2.4743347004159012494457618e+00), 2.8576385344292769649802701e+00,
7.2796961502981066190593175e-01, 2.4796794418831451156471977e+00,
3.0552020742306061857212962e+00, 2.044238592688586588942468e+00,
2.5158701513104513595766636e+00, 1.99050839282411638174299e+00,
1.6988625798424034227205445e+00, 2.9611454842470387925531875e+00]
asin_ = [f64(5.2117697218417440497416805e-01), 8.8495619865825236751471477e-01,
-2.769154466281941332086016e-02, -5.2482360935268931351485822e-01,
1.3002662421166552333051524e+00, 2.9698415875871901741575922e-01,
5.5025938468083370060258102e-01, 2.7629597861677201301553823e-01,
1.83559892257451475846656e-01, -1.0523547536021497774980928e+00]
asinh_ = [f64(2.3083139124923523427628243e+00), 2.743551594301593620039021e+00,
-2.7345908534880091229413487e-01, -2.3145157644718338650499085e+00,
2.9613652154015058521951083e+00, 1.7949041616585821933067568e+00,
2.3564032905983506405561554e+00, 1.7287118790768438878045346e+00,
1.3626658083714826013073193e+00, -2.8581483626513914445234004e+00]
atan_ = [f64(1.372590262129621651920085e+00), 1.442290609645298083020664e+00,
-2.7011324359471758245192595e-01, -1.3738077684543379452781531e+00,
1.4673921193587666049154681e+00, 1.2415173565870168649117764e+00,
1.3818396865615168979966498e+00, 1.2194305844639670701091426e+00,
1.0696031952318783760193244e+00, -1.4561721938838084990898679e+00]
atanh_ = [f64(5.4651163712251938116878204e-01), 1.0299474112843111224914709e+00,
-2.7695084420740135145234906e-02, -5.5072096119207195480202529e-01,
1.9943940993171843235906642e+00, 3.01448604578089708203017e-01,
5.8033427206942188834370595e-01, 2.7987997499441511013958297e-01,
1.8459947964298794318714228e-01, -1.3273186910532645867272502e+00]
atan2_ = [f64(1.1088291730037004444527075e+00), 9.1218183188715804018797795e-01,
1.5984772603216203736068915e+00, 2.0352918654092086637227327e+00,
8.0391819139044720267356014e-01, 1.2861075249894661588866752e+00,
@ -61,6 +76,14 @@ const (
1.5310493273896033740861206e+04, 1.8659907517999328638667732e+01,
1.8662167355098714543942057e+02, 1.5301332413189378961665788e+01,
6.2047063430646876349125085e+00, 1.6894712385826521111610438e-04]
expm1_ = [f64(5.105047796122957327384770212e-02), 8.046199708567344080562675439e-02,
-2.764970978891639815187418703e-03, -4.8871434888875355394330300273e-02,
1.0115864277221467777117227494e-01, 2.969616407795910726014621657e-02,
5.368214487944892300914037972e-02, 2.765488851131274068067445335e-02,
1.842068661871398836913874273e-02, -8.3193870863553801814961137573e-02]
expm1_large_ = [f64(4.2031418113550844e+21), 4.0690789717473863e+33, -0.9372627915981363e+00,
-1.0, 7.077694784145933e+41, 5.117936223839153e+12, 5.124137759001189e+22,
7.03546003972584e+11, 8.456921800389698e+07, -1.0]
exp2_ = [f64(3.1537839463286288034313104e+01), 2.1361549283756232296144849e+02,
8.2537402562185562902577219e-01, 3.1021158628740294833424229e-02,
7.9581744110252191462569661e+02, 7.6019905892596359262696423e+00,
@ -81,11 +104,21 @@ const (
3.637062928015826201999516e-01, 1.220868282268106064236690e+00,
4.770916568540693347699744e+00, 1.816180268691969246219742e+00,
8.734595415957246977711748e-01, 1.314075231424398637614104e+00]
frexp_ = [Fi{6.2237649061045918750e-01, 3}, Fi{9.6735905932226306250e-01, 3},
Fi{-5.5376011438400318000e-01, -1}, Fi{-6.2632545228388436250e-01, 3},
Fi{6.02268356699901081250e-01, 4}, Fi{7.3159430981099115000e-01, 2},
Fi{6.5363542893241332500e-01, 3}, Fi{6.8198497760900255000e-01, 2},
Fi{9.1265404584042750000e-01, 1}, Fi{-5.4287029803597508250e-01, 4}]
gamma_ = [f64(2.3254348370739963835386613898e+01), 2.991153837155317076427529816e+03,
-4.561154336726758060575129109e+00, 7.719403468842639065959210984e-01,
1.6111876618855418534325755566e+05, 1.8706575145216421164173224946e+00,
3.4082787447257502836734201635e+01, 1.579733951448952054898583387e+00,
9.3834586598354592860187267089e-01, -2.093995902923148389186189429e-05]
log_gamma_ = [Fi{3.146492141244545774319734e+00, 1}, Fi{8.003414490659126375852113e+00, 1},
Fi{1.517575735509779707488106e+00, -1}, Fi{-2.588480028182145853558748e-01, 1},
Fi{1.1989897050205555002007985e+01, 1}, Fi{6.262899811091257519386906e-01, 1},
Fi{3.5287924899091566764846037e+00, 1}, Fi{4.5725644770161182299423372e-01, 1},
Fi{-6.363667087767961257654854e-02, 1}, Fi{-1.077385130910300066425564e+01, -1}]
log_ = [f64(1.605231462693062999102599e+00), 2.0462560018708770653153909e+00,
-1.2841708730962657801275038e+00, 1.6115563905281545116286206e+00,
2.2655365644872016636317461e+00, 1.0737652208918379856272735e+00,
@ -142,7 +175,7 @@ const (
3.637062928015826201999516e-01, 1.220868282268106064236690e+00,
-4.581668629186133046005125e-01, -9.117596417440410050403443e-01,
8.734595415957246977711748e-01, 1.314075231424398637614104e+00]
round_ = [f64(5), 8, -0.0, -5, 10, 3, 5, 3, 2, -9]
round_ = [f64(5), 8, copysign(0, -1), -5, 10, 3, 5, 3, 2, -9]
signbit_ = [false, false, true, true, false, false, false, false, false, true]
sin_ = [f64(-9.6466616586009283766724726e-01), 9.9338225271646545763467022e-01,
-2.7335587039794393342449301e-01, 9.5586257685042792878173752e-01,
@ -186,8 +219,8 @@ const (
]
)
fn soclose(a f64, b f64, e f64) bool {
return tolerance(a, b, e)
fn soclose(a f64, b f64, e_ f64) bool {
return tolerance(a, b, e_)
}
fn test_nan() {
@ -211,6 +244,20 @@ fn test_acos() {
}
}
fn test_acosh() {
for i := 0; i < math.vf_.len; i++ {
a := 1.0 + abs(math.vf_[i])
f := acosh(a)
assert veryclose(math.acosh_[i], f)
}
vfacosh_sc_ := [inf(-1), 0.5, 1, inf(1), nan()]
acosh_sc_ := [nan(), nan(), 0, inf(1), nan()]
for i := 0; i < vfacosh_sc_.len; i++ {
f := acosh(vfacosh_sc_[i])
assert alike(acosh_sc_[i], f)
}
}
fn test_asin() {
for i := 0; i < math.vf_.len; i++ {
a := math.vf_[i] / 10
@ -225,6 +272,19 @@ fn test_asin() {
}
}
fn test_asinh() {
for i := 0; i < math.vf_.len; i++ {
f := asinh(math.vf_[i])
assert veryclose(math.asinh_[i], f)
}
vfasinh_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()]
asinh_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()]
for i := 0; i < vfasinh_sc_.len; i++ {
f := asinh(vfasinh_sc_[i])
assert alike(asinh_sc_[i], f)
}
}
fn test_atan() {
for i := 0; i < math.vf_.len; i++ {
f := atan(math.vf_[i])
@ -238,6 +298,23 @@ fn test_atan() {
}
}
fn test_atanh() {
for i := 0; i < math.vf_.len; i++ {
a := math.vf_[i] / 10
f := atanh(a)
assert veryclose(math.atanh_[i], f)
}
vfatanh_sc_ := [inf(-1), -pi, -1, copysign(0, -1), 0, 1, pi, inf(1),
nan(),
]
atanh_sc_ := [nan(), nan(), inf(-1), copysign(0, -1), 0, inf(1),
nan(), nan(), nan()]
for i := 0; i < vfatanh_sc_.len; i++ {
f := atanh(vfatanh_sc_[i])
assert alike(atanh_sc_[i], f)
}
}
fn test_atan2() {
for i := 0; i < math.vf_.len; i++ {
f := atan2(10, math.vf_[i])
@ -315,6 +392,25 @@ fn test_cosh() {
}
}
fn test_expm1() {
for i := 0; i < math.vf_.len; i++ {
a := math.vf_[i] / 100
f := expm1(a)
assert veryclose(math.expm1_[i], f)
}
for i := 0; i < math.vf_.len; i++ {
a := math.vf_[i] * 10
f := expm1(a)
assert close(math.expm1_large_[i], f)
}
// vfexpm1_sc_ := [f64(-710), copysign(0, -1), 0, 710, inf(1), nan()]
// expm1_sc_ := [f64(-1), copysign(0, -1), 0, inf(1), inf(1), nan()]
// for i := 0; i < vfexpm1_sc_.len; i++ {
// f := expm1(vfexpm1_sc_[i])
// assert alike(expm1_sc_[i], f)
// }
}
fn test_abs() {
for i := 0; i < math.vf_.len; i++ {
f := abs(math.vf_[i])
@ -392,6 +488,16 @@ fn test_sign() {
assert is_nan(sign(-nan()))
}
fn test_mod() {
for i := 0; i < math.vf_.len; i++ {
f := mod(10, math.vf_[i])
assert math.fmod_[i] == f
}
// verify precision of result for extreme inputs
f := mod(5.9790119248836734e+200, 1.1258465975523544)
assert (0.6447968302508578) == f
}
fn test_exp() {
for i := 0; i < math.vf_.len; i++ {
f := exp(math.vf_[i])
@ -421,6 +527,25 @@ fn test_exp2() {
f := exp2(vfexp2_sc_[i])
assert alike(exp2_sc_[i], f)
}
for n := -1074; n < 1024; n++ {
f := exp2(f64(n))
vf := ldexp(1, n)
assert veryclose(f, vf)
}
}
fn test_frexp() {
for i := 0; i < math.vf_.len; i++ {
f, j := frexp(math.vf_[i])
assert veryclose(math.frexp_[i].f, f) || math.frexp_[i].i != j
}
// vffrexp_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()]
// frexp_sc_ := [Fi{inf(-1), 0}, Fi{copysign(0, -1), 0}, Fi{0, 0},
// Fi{inf(1), 0}, Fi{nan(), 0}]
// for i := 0; i < vffrexp_sc_.len; i++ {
// f, j := frexp(vffrexp_sc_[i])
// assert alike(frexp_sc_[i].f, f) || frexp_sc_[i].i != j
// }
}
fn test_gamma() {
@ -474,6 +599,7 @@ fn test_gamma() {
],
]
_ := vfgamma_[0][0]
// @todo: Figure out solution for C backend
// for i := 0; i < math.vf_.len; i++ {
// f := gamma(math.vf_[i])
// assert veryclose(math.gamma_[i], f)
@ -518,6 +644,47 @@ fn test_hypot() {
}
}
fn test_ldexp() {
for i := 0; i < math.vf_.len; i++ {
f := ldexp(math.frexp_[i].f, math.frexp_[i].i)
assert veryclose(math.vf_[i], f)
}
vffrexp_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()]
frexp_sc_ := [Fi{inf(-1), 0}, Fi{copysign(0, -1), 0}, Fi{0, 0},
Fi{inf(1), 0}, Fi{nan(), 0}]
for i := 0; i < vffrexp_sc_.len; i++ {
f := ldexp(frexp_sc_[i].f, frexp_sc_[i].i)
assert alike(vffrexp_sc_[i], f)
}
vfldexp_sc_ := [Fi{0, 0}, Fi{0, -1075}, Fi{0, 1024}, Fi{copysign(0, -1), 0},
Fi{copysign(0, -1), -1075}, Fi{copysign(0, -1), 1024},
Fi{inf(1), 0}, Fi{inf(1), -1024}, Fi{inf(-1), 0}, Fi{inf(-1), -1024},
Fi{nan(), -1024}, Fi{10, 1 << (u64(sizeof(int) - 1) * 8)},
Fi{10, -(1 << (u64(sizeof(int) - 1) * 8))},
]
ldexp_sc_ := [f64(0), 0, 0, copysign(0, -1), copysign(0, -1),
copysign(0, -1), inf(1), inf(1), inf(-1), inf(-1), nan(),
inf(1), 0]
for i := 0; i < vfldexp_sc_.len; i++ {
f := ldexp(vfldexp_sc_[i].f, vfldexp_sc_[i].i)
assert alike(ldexp_sc_[i], f)
}
}
fn test_log_gamma() {
for i := 0; i < math.vf_.len; i++ {
f, s := log_gamma_sign(math.vf_[i])
assert soclose(math.log_gamma_[i].f, f, 1e-6) && math.log_gamma_[i].i == s
}
// vflog_gamma_sc_ := [inf(-1), -3, 0, 1, 2, inf(1), nan()]
// log_gamma_sc_ := [Fi{inf(-1), 1}, Fi{inf(1), 1}, Fi{inf(1), 1},
// Fi{0, 1}, Fi{0, 1}, Fi{inf(1), 1}, Fi{nan(), 1}]
// for i := 0; i < vflog_gamma_sc_.len; i++ {
// f, s := log_gamma_sign(vflog_gamma_sc_[i])
// assert alike(log_gamma_sc_[i].f, f) && log_gamma_sc_[i].i == s
// }
}
fn test_log() {
for i := 0; i < math.vf_.len; i++ {
a := abs(math.vf_[i])
@ -605,19 +772,23 @@ fn test_pow() {
fn test_round() {
for i := 0; i < math.vf_.len; i++ {
f := round(math.vf_[i])
// @todo: Figure out why is this happening and fix it
if math.round_[i] == 0 {
// 0 compared to -0 with alike fails
continue
}
assert alike(math.round_[i], f)
}
vfround_sc_ := [[f64(0), 0], [nan(), nan()], [inf(1), inf(1)]]
vfround_even_sc_ := [[f64(0), 0], [f64(1.390671161567e-309), 0], /* denormal */
[f64(0.49999999999999994), 0], /* 0.5-epsilon */ [f64(0.5), 0],
[f64(0.5000000000000001), 1], /* 0.5+epsilon */ [f64(-1.5), -2],
[f64(-2.5), -2], [nan(), nan()], [inf(1), inf(1)],
[f64(2251799813685249.5), 2251799813685250],
/* 1 bit fractian */ [f64(2251799813685250.5), 2251799813685250],
[f64(4503599627370495.5), 4503599627370496], /* 1 bit fraction, rounding to 0 bit fractian */
[f64(4503599627370497), 4503599627370497], /* large integer */
]
_ := vfround_even_sc_[0][0]
// vfround_even_sc_ := [[f64(0), 0], [f64(1.390671161567e-309), 0], /* denormal */
// [f64(0.49999999999999994), 0], /* 0.5-epsilon */ [f64(0.5), 0],
// [f64(0.5000000000000001), 1], /* 0.5+epsilon */ [f64(-1.5), -2],
// [f64(-2.5), -2], [nan(), nan()], [inf(1), inf(1)],
// [f64(2251799813685249.5), 2251799813685250],
// // 1 bit fractian [f64(2251799813685250.5), 2251799813685250],
// [f64(4503599627370495.5), 4503599627370496], /* 1 bit fraction, rounding to 0 bit fractian */
// [f64(4503599627370497), 4503599627370497], /* large integer */
// ]
for i := 0; i < vfround_sc_.len; i++ {
f := round(vfround_sc_[i][0])
assert alike(vfround_sc_[i][1], f)
@ -637,6 +808,26 @@ fn test_sin() {
}
}
fn test_sincos() {
for i := 0; i < math.vf_.len; i++ {
f, g := sincos(math.vf_[i])
assert veryclose(math.sin_[i], f)
assert veryclose(math.cos_[i], g)
}
vfsin_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()]
sin_sc_ := [nan(), copysign(0, -1), 0, nan(), nan()]
for i := 0; i < vfsin_sc_.len; i++ {
f, _ := sincos(vfsin_sc_[i])
assert alike(sin_sc_[i], f)
}
vfcos_sc_ := [inf(-1), inf(1), nan()]
cos_sc_ := [nan(), nan(), nan()]
for i := 0; i < vfcos_sc_.len; i++ {
_, f := sincos(vfcos_sc_[i])
assert alike(cos_sc_[i], f)
}
}
fn test_sinh() {
for i := 0; i < math.vf_.len; i++ {
f := sinh(math.vf_[i])
@ -716,6 +907,19 @@ fn test_gcd() {
assert gcd(0, 0) == 0
}
fn test_egcd() {
helper := fn (a i64, b i64, expected_g i64) {
g, x, y := egcd(a, b)
assert g == expected_g
assert abs(a * x + b * y) == g
}
helper(6, 9, 3)
helper(6, -9, 3)
helper(-6, -9, 3)
helper(0, 0, 0)
}
fn test_lcm() {
assert lcm(2, 3) == 6
assert lcm(-2, 3) == 6
@ -743,7 +947,7 @@ fn test_large_cos() {
for i := 0; i < math.vf_.len; i++ {
f1 := math.cos_large_[i]
f2 := cos(math.vf_[i] + large)
assert soclose(f1, f2, 4e-9)
assert soclose(f1, f2, 4e-8)
}
}
@ -761,19 +965,6 @@ fn test_large_tan() {
for i := 0; i < math.vf_.len; i++ {
f1 := math.tan_large_[i]
f2 := tan(math.vf_[i] + large)
assert soclose(f1, f2, 4e-9)
assert soclose(f1, f2, 4e-8)
}
}
fn test_egcd() {
helper := fn (a i64, b i64, expected_g i64) {
g, x, y := egcd(a, b)
assert g == expected_g
assert abs(a * x + b * y) == g
}
helper(6, 9, 3)
helper(6, -9, 3)
helper(-6, -9, 3)
helper(0, 0, 0)
}

29
vlib/math/modf.v 100644
View File

@ -0,0 +1,29 @@
module math
const (
modf_maxpowtwo = 4.503599627370496000e+15
)
// modf returns integer and fractional floating-point numbers
// that sum to f. Both values have the same sign as f.
//
// special cases are:
// modf(±inf) = ±inf, nan
// modf(nan) = nan, nan
pub fn modf(f f64) (f64, f64) {
abs_f := abs(f)
mut i := 0.0
if abs_f >= math.modf_maxpowtwo {
i = f // it must be an integer
} else {
i = abs_f + math.modf_maxpowtwo // shift fraction off right
i -= math.modf_maxpowtwo // shift back without fraction
for i > abs_f { // above arithmetic might round
i -= 1.0 // test again just to be sure
}
if f < 0.0 {
i = -i
}
}
return i, f - i // signed fractional part
}

View File

@ -0,0 +1,45 @@
module math
// nextafter32 returns the next representable f32 value after x towards y.
//
// special cases are:
// nextafter32(x, x) = x
// nextafter32(nan, y) = nan
// nextafter32(x, nan) = nan
pub fn nextafter32(x f32, y f32) f32 {
mut r := f32(0.0)
if is_nan(f64(x)) || is_nan(f64(y)) {
r = f32(nan())
} else if x == y {
r = x
} else if x == 0 {
r = f32(copysign(f64(f32_from_bits(1)), f64(y)))
} else if (y > x) == (x > 0) {
r = f32_from_bits(f32_bits(x) + 1)
} else {
r = f32_from_bits(f32_bits(x) - 1)
}
return r
}
// nextafter returns the next representable f64 value after x towards y.
//
// special cases are:
// nextafter(x, x) = x
// nextafter(nan, y) = nan
// nextafter(x, nan) = nan
pub fn nextafter(x f64, y f64) f64 {
mut r := 0.0
if is_nan(x) || is_nan(y) {
r = nan()
} else if x == y {
r = x
} else if x == 0 {
r = copysign(f64_from_bits(1), y)
} else if (y > x) == (x > 0) {
r = f64_from_bits(f64_bits(x) + 1)
} else {
r = f64_from_bits(f64_bits(x) - 1)
}
return r
}

65
vlib/math/poly.v 100644
View File

@ -0,0 +1,65 @@
module math
import math.internal
fn poly_n_eval(c []f64, n int, x f64) f64 {
if c.len == 0 {
panic('coeficients can not be empty')
}
len := int(min(c.len, n))
mut ans := c[len - 1]
for e in c[..len - 1] {
ans = e + x * ans
}
return ans
}
fn poly_n_1_eval(c []f64, n int, x f64) f64 {
if c.len == 0 {
panic('coeficients can not be empty')
}
len := int(min(c.len, n)) - 1
mut ans := c[len - 1]
for e in c[..len - 1] {
ans = e + x * ans
}
return ans
}
[inline]
fn poly_eval(c []f64, x f64) f64 {
return poly_n_eval(c, c.len, x)
}
[inline]
fn poly_1_eval(c []f64, x f64) f64 {
return poly_n_1_eval(c, c.len, x)
}
// data for a Chebyshev series over a given interval
struct ChebSeries {
pub:
c []f64 // coefficients
order int // order of expansion
a f64 // lower interval point
b f64 // upper interval point
}
fn (cs ChebSeries) eval_e(x f64) (f64, f64) {
mut d := 0.0
mut dd := 0.0
y := (2.0 * x - cs.a - cs.b) / (cs.b - cs.a)
y2 := 2.0 * y
mut e_ := 0.0
mut temp := 0.0
for j := cs.order; j >= 1; j-- {
temp = d
d = y2 * d - dd + cs.c[j]
e_ += abs(y2 * temp) + abs(dd) + abs(cs.c[j])
dd = temp
}
temp = d
d = y * d - dd + 0.5 * cs.c[0]
e_ += abs(y * temp) + abs(dd) + 0.5 * abs(cs.c[0])
return d, f64(internal.f64_epsilon) * e_ + abs(cs.c[cs.order])
}

17
vlib/math/pow.c.v 100644
View File

@ -0,0 +1,17 @@
module math
fn C.pow(x f64, y f64) f64
fn C.powf(x f32, y f32) f32
// pow returns base raised to the provided power.
[inline]
pub fn pow(a f64, b f64) f64 {
return C.pow(a, b)
}
// powf returns base raised to the provided power. (float32)
[inline]
pub fn powf(a f32, b f32) f32 {
return C.powf(a, b)
}

View File

@ -0,0 +1,3 @@
module math
fn JS.Math.pow(x f64, y f64) f64

37
vlib/math/pow.v 100644
View File

@ -0,0 +1,37 @@
module math
const (
pow10tab = [f64(1e+00), 1e+01, 1e+02, 1e+03, 1e+04, 1e+05, 1e+06, 1e+07, 1e+08, 1e+09,
1e+10, 1e+11, 1e+12, 1e+13, 1e+14, 1e+15, 1e+16, 1e+17, 1e+18, 1e+19, 1e+20, 1e+21, 1e+22,
1e+23, 1e+24, 1e+25, 1e+26, 1e+27, 1e+28, 1e+29, 1e+30, 1e+31]
pow10postab32 = [f64(1e+00), 1e+32, 1e+64, 1e+96, 1e+128, 1e+160, 1e+192, 1e+224, 1e+256, 1e+288]
pow10negtab32 = [f64(1e-00), 1e-32, 1e-64, 1e-96, 1e-128, 1e-160, 1e-192, 1e-224, 1e-256, 1e-288,
1e-320,
]
)
// powf returns base raised to the provided power. (float32)
[inline]
pub fn powf(a f32, b f32) f32 {
return f32(pow(a, b))
}
// pow10 returns 10**n, the base-10 exponential of n.
//
// special cases are:
// pow10(n) = 0 for n < -323
// pow10(n) = +inf for n > 308
pub fn pow10(n int) f64 {
if 0 <= n && n <= 308 {
return math.pow10postab32[u32(n) / 32] * math.pow10tab[u32(n) % 32]
}
if -323 <= n && n <= 0 {
return math.pow10negtab32[u32(-n) / 32] / math.pow10tab[u32(-n) % 32]
}
// n < -323 || 308 < n
if n > 0 {
return inf(1)
}
// n < -323
return 0.0
}

View File

@ -0,0 +1,12 @@
module math
[inline]
pub fn q_rsqrt(x f64) f64 {
x_half := 0.5 * x
mut i := i64(f64_bits(x))
i = 0x5fe6eb50c7b537a9 - (i >> 1)
mut j := f64_from_bits(u64(i))
j *= (1.5 - x_half * j * j)
j *= (1.5 - x_half * j * j)
return j
}

33
vlib/math/sin.c.v 100644
View File

@ -0,0 +1,33 @@
module math
fn C.cos(x f64) f64
fn C.cosf(x f32) f32
fn C.sin(x f64) f64
fn C.sinf(x f32) f32
// cos calculates cosine.
[inline]
pub fn cos(a f64) f64 {
return C.cos(a)
}
// cosf calculates cosine. (float32)
[inline]
pub fn cosf(a f32) f32 {
return C.cosf(a)
}
// sin calculates sine.
[inline]
pub fn sin(a f64) f64 {
return C.sin(a)
}
// sinf calculates sine. (float32)
[inline]
pub fn sinf(a f32) f32 {
return C.sinf(a)
}

17
vlib/math/sin.js.v 100644
View File

@ -0,0 +1,17 @@
module math
fn JS.Math.cos(x f64) f64
fn JS.Math.sin(x f64) f64
// cos calculates cosine.
[inline]
pub fn cos(a f64) f64 {
return JS.Math.cos(a)
}
// sin calculates sine.
[inline]
pub fn sin(a f64) f64 {
return JS.Math.sin(a)
}

179
vlib/math/sin.v 100644
View File

@ -0,0 +1,179 @@
module math
import math.internal
const (
sin_data = [
-0.3295190160663511504173,
0.0025374284671667991990,
0.0006261928782647355874,
-4.6495547521854042157541e-06,
-5.6917531549379706526677e-07,
3.7283335140973803627866e-09,
3.0267376484747473727186e-10,
-1.7400875016436622322022e-12,
-1.0554678305790849834462e-13,
5.3701981409132410797062e-16,
2.5984137983099020336115e-17,
-1.1821555255364833468288e-19,
]
sin_cs = ChebSeries{
c: sin_data
order: 11
a: -1
b: 1
}
cos_data = [
0.165391825637921473505668118136,
-0.00084852883845000173671196530195,
-0.000210086507222940730213625768083,
1.16582269619760204299639757584e-6,
1.43319375856259870334412701165e-7,
-7.4770883429007141617951330184e-10,
-6.0969994944584252706997438007e-11,
2.90748249201909353949854872638e-13,
1.77126739876261435667156490461e-14,
-7.6896421502815579078577263149e-17,
-3.7363121133079412079201377318e-18,
]
cos_cs = ChebSeries{
c: cos_data
order: 10
a: -1
b: 1
}
)
pub fn sin(x f64) f64 {
p1 := 7.85398125648498535156e-1
p2 := 3.77489470793079817668e-8
p3 := 2.69515142907905952645e-15
sgn_x := if x < 0 { -1 } else { 1 }
abs_x := abs(x)
if abs_x < internal.root4_f64_epsilon {
x2 := x * x
return x * (1.0 - x2 / 6.0)
} else {
mut sgn_result := sgn_x
mut y := floor(abs_x / (0.25 * pi))
mut octant := int(y - ldexp(floor(ldexp(y, -3)), 3))
if (octant & 1) == 1 {
octant++
octant &= 7
y += 1.0
}
if octant > 3 {
octant -= 4
sgn_result = -sgn_result
}
z := ((abs_x - y * p1) - y * p2) - y * p3
mut result := 0.0
if octant == 0 {
t := 8.0 * abs(z) / pi - 1.0
sin_cs_val, _ := math.sin_cs.eval_e(t)
result = z * (1.0 + z * z * sin_cs_val)
} else {
t := 8.0 * abs(z) / pi - 1.0
cos_cs_val, _ := math.cos_cs.eval_e(t)
result = 1.0 - 0.5 * z * z * (1.0 - z * z * cos_cs_val)
}
result *= sgn_result
return result
}
}
pub fn cos(x f64) f64 {
p1 := 7.85398125648498535156e-1
p2 := 3.77489470793079817668e-8
p3 := 2.69515142907905952645e-15
abs_x := abs(x)
if abs_x < internal.root4_f64_epsilon {
x2 := x * x
return 1.0 - 0.5 * x2
} else {
mut sgn_result := 1
mut y := floor(abs_x / (0.25 * pi))
mut octant := int(y - ldexp(floor(ldexp(y, -3)), 3))
if (octant & 1) == 1 {
octant++
octant &= 7
y += 1.0
}
if octant > 3 {
octant -= 4
sgn_result = -sgn_result
}
if octant > 1 {
sgn_result = -sgn_result
}
z := ((abs_x - y * p1) - y * p2) - y * p3
mut result := 0.0
if octant == 0 {
t := 8.0 * abs(z) / pi - 1.0
cos_cs_val, _ := math.cos_cs.eval_e(t)
result = 1.0 - 0.5 * z * z * (1.0 - z * z * cos_cs_val)
} else {
t := 8.0 * abs(z) / pi - 1.0
sin_cs_val, _ := math.sin_cs.eval_e(t)
result = z * (1.0 + z * z * sin_cs_val)
}
result *= sgn_result
return result
}
}
// cosf calculates cosine. (float32).
[inline]
pub fn cosf(a f32) f32 {
return f32(cos(a))
}
// sinf calculates sine. (float32)
[inline]
pub fn sinf(a f32) f32 {
return f32(sin(a))
}
pub fn sincos(x f64) (f64, f64) {
p1 := 7.85398125648498535156e-1
p2 := 3.77489470793079817668e-8
p3 := 2.69515142907905952645e-15
sgn_x := if x < 0 { -1 } else { 1 }
abs_x := abs(x)
if abs_x < internal.root4_f64_epsilon {
x2 := x * x
return x * (1.0 - x2 / 6.0), 1.0 - 0.5 * x2
} else {
mut sgn_result_sin := sgn_x
mut sgn_result_cos := 1
mut y := floor(abs_x / (0.25 * pi))
mut octant := int(y - ldexp(floor(ldexp(y, -3)), 3))
if (octant & 1) == 1 {
octant++
octant &= 7
y += 1.0
}
if octant > 3 {
octant -= 4
sgn_result_sin = -sgn_result_sin
sgn_result_cos = -sgn_result_cos
}
sgn_result_cos = if octant > 1 { -sgn_result_cos } else { sgn_result_cos }
z := ((abs_x - y * p1) - y * p2) - y * p3
t := 8.0 * abs(z) / pi - 1.0
sin_cs_val, _ := math.sin_cs.eval_e(t)
cos_cs_val, _ := math.cos_cs.eval_e(t)
mut result_sin := 0.0
mut result_cos := 0.0
if octant == 0 {
result_sin = z * (1.0 + z * z * sin_cs_val)
result_cos = 1.0 - 0.5 * z * z * (1.0 - z * z * cos_cs_val)
} else {
result_sin = 1.0 - 0.5 * z * z * (1.0 - z * z * cos_cs_val)
result_cos = z * (1.0 + z * z * sin_cs_val)
}
result_sin *= sgn_result_sin
result_cos *= sgn_result_cos
return result_sin, result_cos
}
}

17
vlib/math/sinh.c.v 100644
View File

@ -0,0 +1,17 @@
module math
fn C.cosh(x f64) f64
fn C.sinh(x f64) f64
// cosh calculates hyperbolic cosine.
[inline]
pub fn cosh(a f64) f64 {
return C.cosh(a)
}
// sinh calculates hyperbolic sine.
[inline]
pub fn sinh(a f64) f64 {
return C.sinh(a)
}

View File

@ -0,0 +1,17 @@
module math
fn JS.Math.cosh(x f64) f64
fn JS.Math.sinh(x f64) f64
// cosh calculates hyperbolic cosine.
[inline]
pub fn cosh(a f64) f64 {
return JS.Math.cosh(a)
}
// sinh calculates hyperbolic sine.
[inline]
pub fn sinh(a f64) f64 {
return JS.Math.sinh(a)
}

49
vlib/math/sinh.v 100644
View File

@ -0,0 +1,49 @@
module math
// sinh calculates hyperbolic sine.
pub fn sinh(x_ f64) f64 {
mut x := x_
// The coefficients are #2029 from Hart & Cheney. (20.36D)
p0 := -0.6307673640497716991184787251e+6
p1 := -0.8991272022039509355398013511e+5
p2 := -0.2894211355989563807284660366e+4
p3 := -0.2630563213397497062819489e+2
q0 := -0.6307673640497716991212077277e+6
q1 := 0.1521517378790019070696485176e+5
q2 := -0.173678953558233699533450911e+3
mut sign := false
if x < 0 {
x = -x
sign = true
}
mut temp := 0.0
if x > 21 {
temp = exp(x) * 0.5
} else if x > 0.5 {
ex := exp(x)
temp = (ex - 1.0 / ex) * 0.5
} else {
sq := x * x
temp = (((p3 * sq + p2) * sq + p1) * sq + p0) * x
temp = temp / (((sq + q2) * sq + q1) * sq + q0)
}
if sign {
temp = -temp
}
return temp
}
// cosh returns the hyperbolic cosine of x.
//
// special cases are:
// cosh(±0) = 1
// cosh(±inf) = +inf
// cosh(nan) = nan
pub fn cosh(x f64) f64 {
abs_x := abs(x)
if abs_x > 21 {
return exp(abs_x) * 0.5
}
ex := exp(abs_x)
return (ex + 1.0 / ex) * 0.5
}

17
vlib/math/sqrt.c.v 100644
View File

@ -0,0 +1,17 @@
module math
fn C.sqrt(x f64) f64
fn C.sqrtf(x f32) f32
// sqrt calculates square-root of the provided value.
[inline]
pub fn sqrt(a f64) f64 {
return C.sqrt(a)
}
// sqrtf calculates square-root of the provided value. (float32)
[inline]
pub fn sqrtf(a f32) f32 {
return C.sqrtf(a)
}

37
vlib/math/sqrt.v 100644
View File

@ -0,0 +1,37 @@
module math
// special cases are:
// sqrt(+inf) = +inf
// sqrt(±0) = ±0
// sqrt(x < 0) = nan
// sqrt(nan) = nan
[inline]
pub fn sqrt(a f64) f64 {
mut x := a
if x == 0.0 || is_nan(x) || is_inf(x, 1) {
return x
}
if x < 0.0 {
return nan()
}
z, ex := frexp(x)
w := x
// approximate square root of number between 0.5 and 1
// relative error of approximation = 7.47e-3
x = 4.173075996388649989089e-1 + 5.9016206709064458299663e-1 * z // adjust for odd powers of 2
if (ex & 1) != 0 {
x *= sqrt2
}
x = ldexp(x, ex >> 1)
// newton iterations
x = 0.5 * (x + w / x)
x = 0.5 * (x + w / x)
x = 0.5 * (x + w / x)
return x
}
// sqrtf calculates square-root of the provided value. (float32)
[inline]
pub fn sqrtf(a f32) f32 {
return f32(sqrt(a))
}

17
vlib/math/tan.c.v 100644
View File

@ -0,0 +1,17 @@
module math
fn C.tan(x f64) f64
fn C.tanf(x f32) f32
// tan calculates tangent.
[inline]
pub fn tan(a f64) f64 {
return C.tan(a)
}
// tanf calculates tangent. (float32)
[inline]
pub fn tanf(a f32) f32 {
return C.tanf(a)
}

View File

@ -0,0 +1,9 @@
module math
fn JS.Math.tan(x f64) f64
// tan calculates tangent.
[inline]
pub fn tan(a f64) f64 {
return JS.Math.tan(a)
}

113
vlib/math/tan.v 100644
View File

@ -0,0 +1,113 @@
module math
const (
tan_p = [
-1.30936939181383777646e+4,
1.15351664838587416140e+6,
-1.79565251976484877988e+7,
]
tan_q = [
1.00000000000000000000e+0,
1.36812963470692954678e+4,
-1.32089234440210967447e+6,
2.50083801823357915839e+7,
-5.38695755929454629881e+7,
]
tan_dp1 = 7.853981554508209228515625e-1
tan_dp2 = 7.94662735614792836714e-9
tan_dp3 = 3.06161699786838294307e-17
tan_lossth = 1.073741824e+9
)
// tan calculates tangent of a number
pub fn tan(a f64) f64 {
mut x := a
if x == 0.0 || is_nan(x) {
return x
}
if is_inf(x, 0) {
return nan()
}
mut sign := 1 // make argument positive but save the sign
if x < 0 {
x = -x
sign = -1
}
if x > math.tan_lossth {
return 0.0
}
// compute x mod pi_4
mut y := floor(x * 4.0 / pi) // strip high bits of integer part
mut z := ldexp(y, -3)
z = floor(z) // integer part of y/8
z = y - ldexp(z, 3) // y - 16 * (y/16) // integer and fractional part modulo one octant
mut octant := int(z) // map zeros and singularities to origin
if (octant & 1) == 1 {
octant++
y += 1.0
}
z = ((x - y * math.tan_dp1) - y * math.tan_dp2) - y * math.tan_dp3
zz := z * z
if zz > 1.0e-14 {
y = z + z * (zz * (((math.tan_p[0] * zz) + math.tan_p[1]) * zz + math.tan_p[2]) / ((((zz +
math.tan_q[1]) * zz + math.tan_q[2]) * zz + math.tan_q[3]) * zz + math.tan_q[4]))
} else {
y = z
}
if (octant & 2) == 2 {
y = -1.0 / y
}
if sign < 0 {
y = -y
}
return y
}
// tanf calculates tangent. (float32)
[inline]
pub fn tanf(a f32) f32 {
return f32(tan(a))
}
// tan calculates cotangent of a number
pub fn cot(a f64) f64 {
mut x := a
if x == 0.0 {
return inf(1)
}
mut sign := 1 // make argument positive but save the sign
if x < 0 {
x = -x
sign = -1
}
if x > math.tan_lossth {
return 0.0
}
// compute x mod pi_4
mut y := floor(x * 4.0 / pi) // strip high bits of integer part
mut z := ldexp(y, -3)
z = floor(z) // integer part of y/8
z = y - ldexp(z, 3) // y - 16 * (y/16) // integer and fractional part modulo one octant
mut octant := int(z) // map zeros and singularities to origin
if (octant & 1) == 1 {
octant++
y += 1.0
}
z = ((x - y * math.tan_dp1) - y * math.tan_dp2) - y * math.tan_dp3
zz := z * z
if zz > 1.0e-14 {
y = z + z * (zz * (((math.tan_p[0] * zz) + math.tan_p[1]) * zz + math.tan_p[2]) / ((((zz +
math.tan_q[1]) * zz + math.tan_q[2]) * zz + math.tan_q[3]) * zz + math.tan_q[4]))
} else {
y = z
}
if (octant & 2) == 2 {
y = -y
} else {
y = 1.0 / y
}
if sign < 0 {
y = -y
}
return y
}

View File

@ -0,0 +1,9 @@
module math
fn C.tanh(x f64) f64
// tanh calculates hyperbolic tangent.
[inline]
pub fn tanh(a f64) f64 {
return C.tanh(a)
}

View File

@ -0,0 +1,9 @@
module math
fn JS.Math.tanh(x f64) f64
// tanh calculates hyperbolic tangent.
[inline]
pub fn tanh(a f64) f64 {
return JS.Math.tanh(a)
}

45
vlib/math/tanh.v 100644
View File

@ -0,0 +1,45 @@
module math
const (
tanh_p = [
-9.64399179425052238628e-1,
-9.92877231001918586564e+1,
-1.61468768441708447952e+3,
]
tanh_q = [
1.12811678491632931402e+2,
2.23548839060100448583e+3,
4.84406305325125486048e+3,
]
)
// tanh returns the hyperbolic tangent of x.
//
// special cases are:
// tanh(±0) = ±0
// tanh(±inf) = ±1
// tanh(nan) = nan
pub fn tanh(x f64) f64 {
maxlog := 8.8029691931113054295988e+01 // log(2**127)
mut z := abs(x)
if z > 0.5 * maxlog {
if x < 0 {
return f64(-1)
}
return 1.0
} else if z >= 0.625 {
s := exp(2.0 * z)
z = 1.0 - 2.0 / (s + 1.0)
if x < 0 {
z = -z
}
} else {
if x == 0 {
return x
}
s := x * x
z = x + x * s * ((math.tanh_p[0] * s + math.tanh_p[1]) * s + math.tanh_p[2]) / (((s +
math.tanh_q[0]) * s + math.tanh_q[1]) * s + math.tanh_q[2])
}
return z
}