map: use hashmap instead of b-tree
parent
e35f8e9e23
commit
34d926350b
|
@ -1,112 +0,0 @@
|
|||
import rand
|
||||
import time
|
||||
import builtin.hashmap
|
||||
|
||||
fn hashmap_set_bench(arr []string, repeat int) {
|
||||
start_time := time.ticks()
|
||||
for _ in 0..repeat {
|
||||
mut b := hashmap.new_hashmap()
|
||||
for x in arr {
|
||||
b.set(x, 1)
|
||||
}
|
||||
}
|
||||
end_time := time.ticks() - start_time
|
||||
println("* hashmap_set: ${end_time} ms")
|
||||
}
|
||||
|
||||
fn map_set_bench(arr []string, repeat int) {
|
||||
start_time := time.ticks()
|
||||
for _ in 0..repeat {
|
||||
mut b := map[string]int
|
||||
for x in arr {
|
||||
b[x] = 1
|
||||
}
|
||||
}
|
||||
end_time := time.ticks() - start_time
|
||||
println("* map_set: ${end_time} ms")
|
||||
}
|
||||
|
||||
fn hashmap_get_bench(arr []string, repeat int) {
|
||||
mut b := hashmap.new_hashmap()
|
||||
for x in arr {
|
||||
b.set(x, 1)
|
||||
}
|
||||
start_time := time.ticks()
|
||||
for _ in 0..repeat {
|
||||
for x in arr {
|
||||
b.get(x)
|
||||
}
|
||||
}
|
||||
end_time := time.ticks() - start_time
|
||||
println("* hashmap_get: ${end_time} ms")
|
||||
}
|
||||
|
||||
fn map_get_bench(arr []string, repeat int) {
|
||||
mut b := map[string]int
|
||||
for x in arr {
|
||||
b[x] = 1
|
||||
}
|
||||
start_time := time.ticks()
|
||||
for _ in 0..repeat {
|
||||
for x in arr {
|
||||
b[x]
|
||||
}
|
||||
}
|
||||
end_time := time.ticks() - start_time
|
||||
println("* map_get: ${end_time} ms")
|
||||
}
|
||||
|
||||
fn benchmark_many_keys() {
|
||||
key_len := 30
|
||||
repeat := 1
|
||||
for i := 2048; i <= 10000000; i = i * 2 {
|
||||
mut arr := []string
|
||||
for _ in 0..i {
|
||||
mut buf := []byte
|
||||
for j in 0..key_len {
|
||||
buf << byte(rand.next(int(`z`) - int(`a`)) + `a`)
|
||||
}
|
||||
s := string(buf)
|
||||
arr << s
|
||||
}
|
||||
println("$arr.len keys of length $key_len")
|
||||
// Uncomment the benchmark you would like to benchmark
|
||||
// Run one or two at a time while memory leaks is a thing
|
||||
hashmap_get_bench(arr, repeat)
|
||||
map_get_bench(arr, repeat)
|
||||
// hashmap_set_bench(arr, repeat)
|
||||
// map_set_bench(arr, repeat)
|
||||
println('')
|
||||
}
|
||||
}
|
||||
|
||||
fn benchmark_few_keys() {
|
||||
key_len := 30
|
||||
repeat := 10000
|
||||
println("Benchmarks are repeated $repeat times")
|
||||
for i := 16; i <= 2048; i = i * 2 {
|
||||
mut arr := []string
|
||||
for _ in 0..i {
|
||||
mut buf := []byte
|
||||
for j in 0..key_len {
|
||||
buf << byte(rand.next(int(`z`) - int(`a`)) + `a`)
|
||||
}
|
||||
s := string(buf)
|
||||
arr << s
|
||||
}
|
||||
println("$arr.len keys of length $key_len")
|
||||
// Uncomment the benchmark you would like to benchmark
|
||||
// Run one or two at a time while memory leaks is a thing
|
||||
hashmap_get_bench(arr, repeat)
|
||||
map_get_bench(arr, repeat)
|
||||
// hashmap_set_bench(arr, repeat)
|
||||
// map_set_bench(arr, repeat)
|
||||
println('')
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// Uncomment below to benchmark on many keys
|
||||
// benchmark_many_keys()
|
||||
benchmark_few_keys()
|
||||
}
|
|
@ -1,243 +0,0 @@
|
|||
// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
|
||||
// Use of this source code is governed by an MIT license
|
||||
// that can be found in the LICENSE file.
|
||||
module hashmap
|
||||
|
||||
import hash.wyhash
|
||||
|
||||
const (
|
||||
log_size = 5
|
||||
n_hashbits = 24
|
||||
window_size = 16
|
||||
initial_size = 1 << log_size
|
||||
initial_cap = initial_size - 1
|
||||
default_load_factor = 0.8
|
||||
hashbit_mask = u32(0xFFFFFF)
|
||||
probe_offset = u32(0x1000000)
|
||||
max_probe = u32(0xFF000000)
|
||||
)
|
||||
|
||||
pub struct Hashmap {
|
||||
mut:
|
||||
cap u32
|
||||
shift byte
|
||||
window byte
|
||||
info &u32
|
||||
key_values &KeyValue
|
||||
pub mut:
|
||||
load_factor f32
|
||||
size int
|
||||
}
|
||||
|
||||
struct KeyValue {
|
||||
key string
|
||||
mut:
|
||||
value int
|
||||
}
|
||||
|
||||
pub fn new_hashmap() Hashmap {
|
||||
return Hashmap{
|
||||
cap: initial_cap
|
||||
shift: log_size
|
||||
window: window_size
|
||||
info: &u32(calloc(sizeof(u32) * initial_size))
|
||||
key_values: &KeyValue(calloc(sizeof(KeyValue) * initial_size))
|
||||
load_factor: default_load_factor
|
||||
size: 0
|
||||
}
|
||||
}
|
||||
|
||||
pub fn (h mut Hashmap) set(key string, value int) {
|
||||
// load_factor can be adjusted.
|
||||
if (f32(h.size) / f32(h.cap)) > h.load_factor {
|
||||
h.rehash()
|
||||
}
|
||||
hash := wyhash.wyhash_c(key.str, u64(key.len), 0)
|
||||
mut info := u32(((hash >> h.shift) & hashbit_mask) | probe_offset)
|
||||
mut index := hash & h.cap
|
||||
// While probe count is less
|
||||
for info < h.info[index] {
|
||||
index = (index + 1) & h.cap
|
||||
info += probe_offset
|
||||
}
|
||||
// While we might have a match
|
||||
for info == h.info[index] {
|
||||
if key == h.key_values[index].key {
|
||||
h.key_values[index].value = value
|
||||
return
|
||||
}
|
||||
index = (index + 1) & h.cap
|
||||
info += probe_offset
|
||||
}
|
||||
// Match is not possible anymore.
|
||||
// Probe until an empty index is found.
|
||||
// Swap when probe count is higher/richer (Robin Hood).
|
||||
mut current_kv := KeyValue{key, value}
|
||||
for h.info[index] != 0 {
|
||||
if info > h.info[index] {
|
||||
// Swap info word
|
||||
tmp_info := h.info[index]
|
||||
h.info[index] = info
|
||||
info = tmp_info
|
||||
// Swap KeyValue
|
||||
tmp_kv := h.key_values[index]
|
||||
h.key_values[index] = current_kv
|
||||
current_kv = tmp_kv
|
||||
}
|
||||
index = (index + 1) & h.cap
|
||||
info += probe_offset
|
||||
}
|
||||
// Should almost never happen
|
||||
if (info & max_probe) == max_probe {
|
||||
h.rehash()
|
||||
h.set(current_kv.key, current_kv.value)
|
||||
return
|
||||
}
|
||||
h.info[index] = info
|
||||
h.key_values[index] = current_kv
|
||||
h.size++
|
||||
}
|
||||
|
||||
fn (h mut Hashmap) rehash() {
|
||||
old_cap := h.cap
|
||||
h.window--
|
||||
// check if any hashbits are left
|
||||
if h.window == 0 {
|
||||
h.shift += window_size
|
||||
}
|
||||
// double the size of the hashmap
|
||||
h.cap = ((h.cap + 1) << 1) - 1
|
||||
mut new_key_values := &KeyValue(calloc(sizeof(KeyValue) * (h.cap + 1)))
|
||||
mut new_info := &u32(calloc(sizeof(u32) * (h.cap + 1)))
|
||||
for i in 0 .. (old_cap + 1) {
|
||||
if h.info[i] != 0 {
|
||||
mut kv := h.key_values[i]
|
||||
mut hash := u64(0)
|
||||
mut info := u32(0)
|
||||
if h.window == 0 {
|
||||
hash = wyhash.wyhash_c(kv.key.str, u64(kv.key.len), 0)
|
||||
info = u32(((hash >> h.shift) & hashbit_mask) | probe_offset)
|
||||
}
|
||||
else {
|
||||
original := u64(i - ((h.info[i] >> n_hashbits) - 1)) & (h.cap >> 1)
|
||||
hash = original | (h.info[i] << h.shift)
|
||||
info = (h.info[i] & hashbit_mask) | probe_offset
|
||||
}
|
||||
mut index := hash & h.cap
|
||||
// While probe count is less
|
||||
for info < new_info[index] {
|
||||
index = (index + 1) & h.cap
|
||||
info += probe_offset
|
||||
}
|
||||
// Probe until an empty index is found.
|
||||
// Swap when probe count is higher/richer (Robin Hood).
|
||||
for new_info[index] != 0 {
|
||||
if info > new_info[index] {
|
||||
// Swap info word
|
||||
tmp_info := new_info[index]
|
||||
new_info[index] = info
|
||||
info = tmp_info
|
||||
// Swap KeyValue
|
||||
tmp_kv := new_key_values[index]
|
||||
new_key_values[index] = kv
|
||||
kv = tmp_kv
|
||||
}
|
||||
index = (index + 1) & h.cap
|
||||
info += probe_offset
|
||||
}
|
||||
// Should almost never happen
|
||||
if (info & max_probe) == max_probe {
|
||||
h.rehash()
|
||||
h.set(kv.key, kv.value)
|
||||
return
|
||||
}
|
||||
new_info[index] = info
|
||||
new_key_values[index] = kv
|
||||
}
|
||||
}
|
||||
if h.window == 0 {
|
||||
h.window = window_size
|
||||
}
|
||||
free(h.key_values)
|
||||
free(h.info)
|
||||
h.key_values = new_key_values
|
||||
h.info = new_info
|
||||
}
|
||||
|
||||
pub fn (h mut Hashmap) delete(key string) {
|
||||
hash := wyhash.wyhash_c(key.str, u64(key.len), 0)
|
||||
mut index := hash & h.cap
|
||||
mut info := u32(((hash >> h.shift) & hashbit_mask) | probe_offset)
|
||||
for info < h.info[index] {
|
||||
index = (index + 1) & h.cap
|
||||
info += probe_offset
|
||||
}
|
||||
// Perform backwards shifting
|
||||
for info == h.info[index] {
|
||||
if key == h.key_values[index].key {
|
||||
mut old_index := index
|
||||
index = (index + 1) & h.cap
|
||||
mut current_info := h.info[index]
|
||||
for (current_info >> n_hashbits) > 1 {
|
||||
h.info[old_index] = current_info - probe_offset
|
||||
h.key_values[old_index] = h.key_values[index]
|
||||
old_index = index
|
||||
index = (index + 1) & h.cap
|
||||
current_info = h.info[index]
|
||||
}
|
||||
h.info[old_index] = 0
|
||||
h.size--
|
||||
return
|
||||
}
|
||||
index = (index + 1) & h.cap
|
||||
info += probe_offset
|
||||
}
|
||||
}
|
||||
|
||||
pub fn (h Hashmap) get(key string) int {
|
||||
hash := wyhash.wyhash_c(key.str, u64(key.len), 0)
|
||||
mut index := hash & h.cap
|
||||
mut info := u32(((hash >> h.shift) & hashbit_mask) | probe_offset)
|
||||
for info < h.info[index] {
|
||||
index = (index + 1) & h.cap
|
||||
info += probe_offset
|
||||
}
|
||||
for info == h.info[index] {
|
||||
if key == h.key_values[index].key {
|
||||
return h.key_values[index].value
|
||||
}
|
||||
index = (index + 1) & h.cap
|
||||
info += probe_offset
|
||||
}
|
||||
return 0
|
||||
}
|
||||
|
||||
pub fn (h Hashmap) exists(key string) bool {
|
||||
hash := wyhash.wyhash_c(key.str, u64(key.len), 0)
|
||||
mut index := hash & h.cap
|
||||
mut info := u32(((hash >> h.shift) & hashbit_mask) | probe_offset)
|
||||
for info < h.info[index] {
|
||||
index = (index + 1) & h.cap
|
||||
info += probe_offset
|
||||
}
|
||||
for info == h.info[index] {
|
||||
if key == h.key_values[index].key {
|
||||
return true
|
||||
}
|
||||
index = (index + 1) & h.cap
|
||||
info += probe_offset
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
pub fn (h Hashmap) keys() []string {
|
||||
mut keys := [''].repeat(h.size)
|
||||
mut j := 0
|
||||
for i in 0 .. (h.cap + 1) {
|
||||
if h.info[i] != 0 {
|
||||
keys[j] = h.key_values[i].key
|
||||
j++
|
||||
}
|
||||
}
|
||||
return keys
|
||||
}
|
|
@ -1,33 +0,0 @@
|
|||
module hashmap
|
||||
|
||||
import rand
|
||||
|
||||
fn test_random_strings() {
|
||||
mut m := new_hashmap()
|
||||
for i in 0..1000 {
|
||||
mut buf := []byte
|
||||
for j in 0..10 {
|
||||
buf << byte(rand.next(int(`z`) - int(`a`)) + `a`)
|
||||
}
|
||||
s := string(buf)
|
||||
//println(s)
|
||||
m.set(s, i)
|
||||
assert m.get(s) == i
|
||||
}
|
||||
m.set('foo', 12)
|
||||
val := m.get('foo')
|
||||
assert val == 12
|
||||
}
|
||||
|
||||
fn test_large_hashmap() {
|
||||
N := 300 * 1000
|
||||
mut nums := new_hashmap()
|
||||
for i := 0; i < N; i++ {
|
||||
key := i.str()
|
||||
nums.set(key, i)
|
||||
}
|
||||
for i := 0; i < N; i++ {
|
||||
key := i.str()
|
||||
assert nums.get(key) == i
|
||||
}
|
||||
}
|
|
@ -4,44 +4,73 @@
|
|||
|
||||
module builtin
|
||||
|
||||
import strings
|
||||
|
||||
// B-trees are balanced search trees with all leaves at
|
||||
// the same level. B-trees are generally faster than
|
||||
// binary search trees due to the better locality of
|
||||
// reference, since multiple keys are stored in one node.
|
||||
|
||||
// The number for `degree` has been picked through vigor-
|
||||
// ous benchmarking but can be changed to any number > 1.
|
||||
// `degree` determines the size of each node.
|
||||
import (
|
||||
strings
|
||||
hash.wyhash
|
||||
)
|
||||
|
||||
const (
|
||||
degree = 6
|
||||
mid_index = degree - 1
|
||||
max_size = 2 * degree - 1
|
||||
children_bytes = sizeof(voidptr) * (max_size + 1)
|
||||
// Number of bits from the hash stored for each entry
|
||||
hashbits = 24
|
||||
// Number of bits from the hash stored for rehasing
|
||||
cached_hashbits = 16
|
||||
// Initial log-number of buckets in the hashtable
|
||||
init_log_capicity = 5
|
||||
// Initial number of buckets in the hashtable
|
||||
init_capicity = 1<<init_log_capicity
|
||||
// Initial load-factor
|
||||
init_load_factor = 0.8
|
||||
// Initial range cap
|
||||
init_range_cap = init_capicity - 1
|
||||
// Bitmask to select all the hashbits
|
||||
hash_mask = u32(0x00FFFFFF)
|
||||
// Used for incrementing the probe-count
|
||||
probe_inc = u32(0x01000000)
|
||||
// Bitmask for maximum probe count
|
||||
max_probe = u32(0xFF000000)
|
||||
)
|
||||
|
||||
pub struct map {
|
||||
// Byte size of value
|
||||
value_bytes int
|
||||
mut:
|
||||
root &mapnode
|
||||
// Index of the highest index in the hashtable
|
||||
range_cap u32
|
||||
// Number of cached hashbits left for rehasing
|
||||
window byte
|
||||
// Used for right-shifting out used hashbits
|
||||
shift byte
|
||||
// Pointer to Key-value memory
|
||||
key_values &KeyValue
|
||||
// Pointer to probe_hash memory. Each Key-value has a
|
||||
// corresponding probe_hash-DWORD. Upper-bits are the
|
||||
// probe-count and lower-bits are bits from the hash.
|
||||
probe_hash &u32
|
||||
// Measure that decides when to increase the capacity
|
||||
load_factor f32
|
||||
pub mut:
|
||||
size int
|
||||
// Number of key-values currently in the hashmap
|
||||
size int
|
||||
}
|
||||
|
||||
struct mapnode {
|
||||
struct KeyValue {
|
||||
key string
|
||||
mut:
|
||||
keys [11]string // TODO: Should use `max_size`
|
||||
values [11]voidptr // TODO: Should use `max_size`
|
||||
children &voidptr
|
||||
size int
|
||||
value voidptr
|
||||
}
|
||||
|
||||
fn new_map(n, value_bytes int) map { // TODO: Remove `n`
|
||||
return map {
|
||||
fn new_map(n, value_bytes int) map {
|
||||
probe_hash_bytes := sizeof(u32) * init_capicity
|
||||
key_value_bytes := sizeof(KeyValue) * init_capicity
|
||||
memory := calloc(key_value_bytes + probe_hash_bytes)
|
||||
return map{
|
||||
value_bytes: value_bytes
|
||||
root: new_node()
|
||||
range_cap: init_range_cap
|
||||
shift: init_log_capicity
|
||||
window: cached_hashbits
|
||||
key_values: &KeyValue(memory)
|
||||
probe_hash: &u32(memory + key_value_bytes)
|
||||
load_factor: init_load_factor
|
||||
size: 0
|
||||
}
|
||||
}
|
||||
|
@ -54,383 +83,281 @@ fn new_map_init(n, value_bytes int, keys &string, values voidptr) map {
|
|||
return out
|
||||
}
|
||||
|
||||
// The tree is initialized with an empty node as root to
|
||||
// avoid having to check whether the root is null for
|
||||
// each insertion.
|
||||
fn new_node() &mapnode {
|
||||
return &mapnode {
|
||||
children: 0
|
||||
size: 0
|
||||
fn (m mut map) set(key string, value voidptr) {
|
||||
// load_factor can be adjusted.
|
||||
if (f32(m.size) / f32(m.range_cap)) > m.load_factor {
|
||||
m.expand()
|
||||
}
|
||||
hash := wyhash.wyhash_c(key.str, u64(key.len), 0)
|
||||
mut probe_hash := u32(((hash>>m.shift) & hash_mask) | probe_inc)
|
||||
mut index := hash & m.range_cap
|
||||
// While probe count is less
|
||||
for probe_hash < m.probe_hash[index] {
|
||||
index = (index + 1) & m.range_cap
|
||||
probe_hash += probe_inc
|
||||
}
|
||||
// While we might have a match
|
||||
for probe_hash == m.probe_hash[index] {
|
||||
if key == m.key_values[index].key {
|
||||
C.memcpy(m.key_values[index].value, value, m.value_bytes)
|
||||
return
|
||||
}
|
||||
index = (index + 1) & m.range_cap
|
||||
probe_hash += probe_inc
|
||||
}
|
||||
// Match is not possible anymore.
|
||||
// Probe until an empty index is found.
|
||||
// Swap when probe count is higher/richer (Robin Hood).
|
||||
mut current_kv := KeyValue{key, malloc(m.value_bytes)}
|
||||
C.memcpy(current_kv.value, value, m.value_bytes)
|
||||
for m.probe_hash[index] != 0 {
|
||||
if probe_hash > m.probe_hash[index] {
|
||||
// Swap probe_hash
|
||||
tmp_probe_hash := m.probe_hash[index]
|
||||
m.probe_hash[index] = probe_hash
|
||||
probe_hash = tmp_probe_hash
|
||||
// Swap KeyValue
|
||||
tmp_kv := m.key_values[index]
|
||||
m.key_values[index] = current_kv
|
||||
current_kv = tmp_kv
|
||||
}
|
||||
index = (index + 1) & m.range_cap
|
||||
probe_hash += probe_inc
|
||||
}
|
||||
// Should almost never happen
|
||||
if (probe_hash & max_probe) == max_probe {
|
||||
m.expand()
|
||||
m.set(current_kv.key, current_kv.value)
|
||||
return
|
||||
}
|
||||
m.probe_hash[index] = probe_hash
|
||||
m.key_values[index] = current_kv
|
||||
m.size++
|
||||
}
|
||||
|
||||
// This implementation does proactive insertion, meaning
|
||||
// that splits are done top-down and not bottom-up.
|
||||
fn (m mut map) set(key string, value voidptr) {
|
||||
mut node := m.root
|
||||
mut child_index := 0
|
||||
mut parent := &mapnode(0)
|
||||
for {
|
||||
fn (m mut map) expand() {
|
||||
old_range_cap := m.range_cap
|
||||
// double the size of the hashmap
|
||||
m.range_cap = ((m.range_cap + 1)<<1) - 1
|
||||
// check if no hashbits are left
|
||||
if m.window == 0 {
|
||||
m.shift += cached_hashbits
|
||||
m.rehash(old_range_cap)
|
||||
m.window = cached_hashbits
|
||||
}
|
||||
else {
|
||||
m.cached_rehash(old_range_cap)
|
||||
}
|
||||
m.window--
|
||||
}
|
||||
|
||||
if node.size == max_size {
|
||||
if isnil(parent) {
|
||||
parent = new_node()
|
||||
m.root = parent
|
||||
fn (m mut map) rehash(old_range_cap u32) {
|
||||
probe_hash_bytes := sizeof(u32) * (m.range_cap + 1)
|
||||
key_value_bytes := sizeof(KeyValue) * (m.range_cap + 1)
|
||||
memory := calloc(probe_hash_bytes + key_value_bytes)
|
||||
mut new_key_values := &KeyValue(memory)
|
||||
mut new_probe_hash := &u32(memory + key_value_bytes)
|
||||
for i in 0 .. (old_range_cap + 1) {
|
||||
if m.probe_hash[i] != 0 {
|
||||
mut kv := m.key_values[i]
|
||||
hash := wyhash.wyhash_c(kv.key.str, u64(kv.key.len), 0)
|
||||
mut probe_hash := u32(((hash>>m.shift) & hash_mask) | probe_inc)
|
||||
mut index := hash & m.range_cap
|
||||
// While probe count is less
|
||||
for probe_hash < new_probe_hash[index] {
|
||||
index = (index + 1) & m.range_cap
|
||||
probe_hash += probe_inc
|
||||
}
|
||||
parent.split_child(child_index, mut node)
|
||||
if key == parent.keys[child_index] {
|
||||
C.memcpy(parent.values[child_index], value, m.value_bytes)
|
||||
// Probe until an empty index is found.
|
||||
// Swap when probe count is higher/richer (Robin Hood).
|
||||
for new_probe_hash[index] != 0 {
|
||||
if probe_hash > new_probe_hash[index] {
|
||||
// Swap probe_hash
|
||||
tmp_probe_hash := new_probe_hash[index]
|
||||
new_probe_hash[index] = probe_hash
|
||||
probe_hash = tmp_probe_hash
|
||||
// Swap KeyValue
|
||||
tmp_kv := new_key_values[index]
|
||||
new_key_values[index] = kv
|
||||
kv = tmp_kv
|
||||
}
|
||||
index = (index + 1) & m.range_cap
|
||||
probe_hash += probe_inc
|
||||
}
|
||||
// Should almost never happen
|
||||
if (probe_hash & max_probe) == max_probe {
|
||||
m.expand()
|
||||
m.set(kv.key, kv.value)
|
||||
return
|
||||
}
|
||||
node = if key < parent.keys[child_index] {
|
||||
&mapnode(parent.children[child_index])
|
||||
} else {
|
||||
&mapnode(parent.children[child_index + 1])
|
||||
}
|
||||
new_probe_hash[index] = probe_hash
|
||||
new_key_values[index] = kv
|
||||
}
|
||||
mut i := 0
|
||||
for i < node.size && key > node.keys[i] { i++ }
|
||||
if i != node.size && key == node.keys[i] {
|
||||
C.memcpy(node.values[i], value, m.value_bytes)
|
||||
return
|
||||
}
|
||||
if isnil(node.children) {
|
||||
mut j := node.size - 1
|
||||
for j >= 0 && key < node.keys[j] {
|
||||
node.keys[j + 1] = node.keys[j]
|
||||
node.values[j + 1] = node.values[j]
|
||||
j--
|
||||
}
|
||||
node.keys[j + 1] = key
|
||||
node.values[j + 1] = malloc(m.value_bytes)
|
||||
C.memcpy(node.values[j + 1], value, m.value_bytes)
|
||||
node.size++
|
||||
m.size++
|
||||
return
|
||||
}
|
||||
parent = node
|
||||
child_index = i
|
||||
node = &mapnode(node.children[child_index])
|
||||
}
|
||||
unsafe{
|
||||
free(m.key_values)
|
||||
}
|
||||
m.key_values = new_key_values
|
||||
m.probe_hash = new_probe_hash
|
||||
}
|
||||
|
||||
fn (n mut mapnode) split_child(child_index int, y mut mapnode) {
|
||||
mut z := new_node()
|
||||
z.size = mid_index
|
||||
y.size = mid_index
|
||||
for j := mid_index - 1; j >= 0; j-- {
|
||||
z.keys[j] = y.keys[j + degree]
|
||||
z.values[j] = y.values[j + degree]
|
||||
}
|
||||
if !isnil(y.children) {
|
||||
z.children = &voidptr(malloc(children_bytes))
|
||||
for jj := degree - 1; jj >= 0; jj-- {
|
||||
z.children[jj] = y.children[jj + degree]
|
||||
fn (m mut map) cached_rehash(old_range_cap u32) {
|
||||
probe_hash_bytes := sizeof(u32) * (m.range_cap + 1)
|
||||
key_value_bytes := sizeof(KeyValue) * (m.range_cap + 1)
|
||||
memory := calloc(probe_hash_bytes + key_value_bytes)
|
||||
mut new_probe_hash := &u32(memory + key_value_bytes)
|
||||
mut new_key_values := &KeyValue(memory)
|
||||
for i in 0 .. (old_range_cap + 1) {
|
||||
if m.probe_hash[i] != 0 {
|
||||
mut kv := m.key_values[i]
|
||||
mut probe_hash := m.probe_hash[i]
|
||||
original := u64(i - ((probe_hash>>hashbits) - 1)) & (m.range_cap>>1)
|
||||
hash := original | (probe_hash<<m.shift)
|
||||
probe_hash = (probe_hash & hash_mask) | probe_inc
|
||||
mut index := hash & m.range_cap
|
||||
// While probe count is less
|
||||
for probe_hash < new_probe_hash[index] {
|
||||
index = (index + 1) & m.range_cap
|
||||
probe_hash += probe_inc
|
||||
}
|
||||
// Probe until an empty index is found.
|
||||
// Swap when probe count is higher/richer (Robin Hood).
|
||||
for new_probe_hash[index] != 0 {
|
||||
if probe_hash > new_probe_hash[index] {
|
||||
// Swap probe_hash
|
||||
tmp_probe_hash := new_probe_hash[index]
|
||||
new_probe_hash[index] = probe_hash
|
||||
probe_hash = tmp_probe_hash
|
||||
// Swap KeyValue
|
||||
tmp_kv := new_key_values[index]
|
||||
new_key_values[index] = kv
|
||||
kv = tmp_kv
|
||||
}
|
||||
index = (index + 1) & m.range_cap
|
||||
probe_hash += probe_inc
|
||||
}
|
||||
// Should almost never happen
|
||||
if (probe_hash & max_probe) == max_probe {
|
||||
m.expand()
|
||||
m.set(kv.key, kv.value)
|
||||
return
|
||||
}
|
||||
new_probe_hash[index] = probe_hash
|
||||
new_key_values[index] = kv
|
||||
}
|
||||
}
|
||||
if isnil(n.children) {
|
||||
n.children = &voidptr(malloc(children_bytes))
|
||||
unsafe{
|
||||
free(m.key_values)
|
||||
}
|
||||
n.children[n.size + 1] = n.children[n.size]
|
||||
for j := n.size; j > child_index; j-- {
|
||||
n.keys[j] = n.keys[j - 1]
|
||||
n.values[j] = n.values[j - 1]
|
||||
n.children[j] = n.children[j - 1]
|
||||
m.key_values = new_key_values
|
||||
m.probe_hash = new_probe_hash
|
||||
}
|
||||
|
||||
pub fn (m mut map) delete(key string) {
|
||||
hash := wyhash.wyhash_c(key.str, u64(key.len), 0)
|
||||
mut index := hash & m.range_cap
|
||||
mut probe_hash := u32(((hash>>m.shift) & hash_mask) | probe_inc)
|
||||
for probe_hash < m.probe_hash[index] {
|
||||
index = (index + 1) & m.range_cap
|
||||
probe_hash += probe_inc
|
||||
}
|
||||
// Perform backwards shifting
|
||||
for probe_hash == m.probe_hash[index] {
|
||||
if key == m.key_values[index].key {
|
||||
mut old_index := index
|
||||
index = (index + 1) & m.range_cap
|
||||
mut current_probe_hash := m.probe_hash[index]
|
||||
for (current_probe_hash>>hashbits) > 1 {
|
||||
m.probe_hash[old_index] = current_probe_hash - probe_inc
|
||||
m.key_values[old_index] = m.key_values[index]
|
||||
old_index = index
|
||||
index = (index + 1) & m.range_cap
|
||||
current_probe_hash = m.probe_hash[index]
|
||||
}
|
||||
m.probe_hash[old_index] = 0
|
||||
m.size--
|
||||
return
|
||||
}
|
||||
index = (index + 1) & m.range_cap
|
||||
probe_hash += probe_inc
|
||||
}
|
||||
n.keys[child_index] = y.keys[mid_index]
|
||||
n.values[child_index] = y.values[mid_index]
|
||||
n.children[child_index] = voidptr(y)
|
||||
n.children[child_index + 1] = voidptr(z)
|
||||
n.size++
|
||||
}
|
||||
|
||||
fn (m map) get(key string, out voidptr) bool {
|
||||
mut node := m.root
|
||||
for {
|
||||
mut i := node.size - 1
|
||||
for i >= 0 && key < node.keys[i] {
|
||||
i--
|
||||
}
|
||||
if i != -1 && key == node.keys[i] {
|
||||
C.memcpy(out, node.values[i], m.value_bytes)
|
||||
hash := wyhash.wyhash_c(key.str, u64(key.len), 0)
|
||||
mut index := hash & m.range_cap
|
||||
mut probe_hash := u32(((hash>>m.shift) & hash_mask) | probe_inc)
|
||||
for probe_hash < m.probe_hash[index] {
|
||||
index = (index + 1) & m.range_cap
|
||||
probe_hash += probe_inc
|
||||
}
|
||||
for probe_hash == m.probe_hash[index] {
|
||||
if key == m.key_values[index].key {
|
||||
C.memcpy(out, m.key_values[index].value, m.value_bytes)
|
||||
return true
|
||||
}
|
||||
if isnil(node.children) {
|
||||
break
|
||||
}
|
||||
node = &mapnode(node.children[i + 1])
|
||||
index = (index + 1) & m.range_cap
|
||||
probe_hash += probe_inc
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
fn (m map) exists(key string) bool {
|
||||
if isnil(m.root) { // TODO: find out why root can be nil
|
||||
if m.value_bytes == 0 {
|
||||
return false
|
||||
}
|
||||
mut node := m.root
|
||||
for {
|
||||
mut i := node.size - 1
|
||||
for i >= 0 && key < node.keys[i] { i-- }
|
||||
if i != -1 && key == node.keys[i] {
|
||||
hash := wyhash.wyhash_c(key.str, u64(key.len), 0)
|
||||
mut index := hash & m.range_cap
|
||||
mut probe_hash := u32(((hash>>m.shift) & hash_mask) | probe_inc)
|
||||
for probe_hash < m.probe_hash[index] {
|
||||
index = (index + 1) & m.range_cap
|
||||
probe_hash += probe_inc
|
||||
}
|
||||
for probe_hash == m.probe_hash[index] {
|
||||
if key == m.key_values[index].key {
|
||||
return true
|
||||
}
|
||||
if isnil(node.children) {
|
||||
break
|
||||
}
|
||||
node = &mapnode(node.children[i + 1])
|
||||
index = (index + 1) & m.range_cap
|
||||
probe_hash += probe_inc
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
fn (n mapnode) find_key(k string) int {
|
||||
mut idx := 0
|
||||
for idx < n.size && n.keys[idx] < k {
|
||||
idx++
|
||||
}
|
||||
return idx
|
||||
}
|
||||
|
||||
fn (n mut mapnode) remove_key(k string) bool {
|
||||
idx := n.find_key(k)
|
||||
if idx < n.size && n.keys[idx] == k {
|
||||
if isnil(n.children) {
|
||||
n.remove_from_leaf(idx)
|
||||
} else {
|
||||
n.remove_from_non_leaf(idx)
|
||||
}
|
||||
return true
|
||||
} else {
|
||||
if isnil(n.children) {
|
||||
return false
|
||||
}
|
||||
flag := if idx == n.size {true} else {false}
|
||||
if (&mapnode(n.children[idx])).size < degree {
|
||||
n.fill(idx)
|
||||
}
|
||||
|
||||
if flag && idx > n.size {
|
||||
return (&mapnode(n.children[idx - 1])).remove_key(k)
|
||||
} else {
|
||||
return (&mapnode(n.children[idx])).remove_key(k)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn (n mut mapnode) remove_from_leaf(idx int) {
|
||||
for i := idx + 1; i < n.size; i++ {
|
||||
n.keys[i - 1] = n.keys[i]
|
||||
n.values[i - 1] = n.values[i]
|
||||
}
|
||||
n.size--
|
||||
}
|
||||
|
||||
fn (n mut mapnode) remove_from_non_leaf(idx int) {
|
||||
k := n.keys[idx]
|
||||
if &mapnode(n.children[idx]).size >= degree {
|
||||
mut current := &mapnode(n.children[idx])
|
||||
for !isnil(current.children) {
|
||||
current = &mapnode(current.children[current.size])
|
||||
}
|
||||
predecessor := current.keys[current.size - 1]
|
||||
n.keys[idx] = predecessor
|
||||
n.values[idx] = current.values[current.size - 1]
|
||||
(&mapnode(n.children[idx])).remove_key(predecessor)
|
||||
} else if &mapnode(n.children[idx + 1]).size >= degree {
|
||||
mut current := &mapnode(n.children[idx + 1])
|
||||
for !isnil(current.children) {
|
||||
current = &mapnode(current.children[0])
|
||||
}
|
||||
successor := current.keys[0]
|
||||
n.keys[idx] = successor
|
||||
n.values[idx] = current.values[0]
|
||||
(&mapnode(n.children[idx + 1])).remove_key(successor)
|
||||
} else {
|
||||
n.merge(idx)
|
||||
(&mapnode(n.children[idx])).remove_key(k)
|
||||
}
|
||||
}
|
||||
|
||||
fn (n mut mapnode) fill(idx int) {
|
||||
if idx != 0 && &mapnode(n.children[idx - 1]).size >= degree {
|
||||
n.borrow_from_prev(idx)
|
||||
} else if idx != n.size && &mapnode(n.children[idx + 1]).size >= degree {
|
||||
n.borrow_from_next(idx)
|
||||
} else if idx != n.size {
|
||||
n.merge(idx)
|
||||
} else {
|
||||
n.merge(idx - 1)
|
||||
}
|
||||
}
|
||||
|
||||
fn (n mut mapnode) borrow_from_prev(idx int) {
|
||||
mut child := &mapnode(n.children[idx])
|
||||
mut sibling := &mapnode(n.children[idx - 1])
|
||||
for i := child.size - 1; i >= 0; i-- {
|
||||
child.keys[i + 1] = child.keys[i]
|
||||
child.values[i + 1] = child.values[i]
|
||||
}
|
||||
if !isnil(child.children) {
|
||||
for i := child.size; i >= 0; i-- {
|
||||
child.children[i + 1] = child.children[i]
|
||||
}
|
||||
}
|
||||
child.keys[0] = n.keys[idx - 1]
|
||||
child.values[0] = n.values[idx - 1]
|
||||
if !isnil(child.children) {
|
||||
child.children[0] = sibling.children[sibling.size]
|
||||
}
|
||||
n.keys[idx - 1] = sibling.keys[sibling.size - 1]
|
||||
n.values[idx - 1] = sibling.values[sibling.size - 1]
|
||||
child.size++
|
||||
sibling.size--
|
||||
}
|
||||
|
||||
fn (n mut mapnode) borrow_from_next(idx int) {
|
||||
mut child := &mapnode(n.children[idx])
|
||||
mut sibling := &mapnode(n.children[idx + 1])
|
||||
child.keys[child.size] = n.keys[idx]
|
||||
child.values[child.size] = n.values[idx]
|
||||
if !isnil(child.children) {
|
||||
child.children[child.size + 1] = sibling.children[0]
|
||||
}
|
||||
n.keys[idx] = sibling.keys[0]
|
||||
n.values[idx] = sibling.values[0]
|
||||
for i := 1; i < sibling.size; i++ {
|
||||
sibling.keys[i - 1] = sibling.keys[i]
|
||||
sibling.values[i - 1] = sibling.values[i]
|
||||
}
|
||||
if !isnil(sibling.children) {
|
||||
for i := 1; i <= sibling.size; i++ {
|
||||
sibling.children[i - 1] = sibling.children[i]
|
||||
}
|
||||
}
|
||||
child.size++
|
||||
sibling.size--
|
||||
}
|
||||
|
||||
fn (n mut mapnode) merge(idx int) {
|
||||
mut child := &mapnode(n.children[idx])
|
||||
sibling := &mapnode(n.children[idx + 1])
|
||||
child.keys[mid_index] = n.keys[idx]
|
||||
child.values[mid_index] = n.values[idx]
|
||||
for i := 0; i < sibling.size; i++ {
|
||||
child.keys[i + degree] = sibling.keys[i]
|
||||
child.values[i + degree] = sibling.values[i]
|
||||
}
|
||||
if !isnil(child.children) {
|
||||
for i := 0; i <= sibling.size; i++ {
|
||||
child.children[i + degree] = sibling.children[i]
|
||||
}
|
||||
}
|
||||
for i := idx + 1; i < n.size; i++ {
|
||||
n.keys[i - 1] = n.keys[i]
|
||||
n.values[i - 1] = n.values[i]
|
||||
}
|
||||
for i := idx + 2; i <= n.size; i++ {
|
||||
n.children[i - 1] = n.children[i]
|
||||
}
|
||||
child.size += sibling.size + 1
|
||||
n.size--
|
||||
// free(sibling)
|
||||
}
|
||||
|
||||
pub fn (m mut map) delete(key string) {
|
||||
if m.root.size == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
removed := m.root.remove_key(key)
|
||||
if removed {
|
||||
m.size--
|
||||
}
|
||||
|
||||
if m.root.size == 0 {
|
||||
// tmp := t.root
|
||||
if isnil(m.root.children) {
|
||||
return
|
||||
} else {
|
||||
m.root = &mapnode(m.root.children[0])
|
||||
}
|
||||
// free(tmp)
|
||||
}
|
||||
}
|
||||
|
||||
// Insert all keys of the subtree into array `keys`
|
||||
// starting at `at`. Keys are inserted in order.
|
||||
fn (n mapnode) subkeys(keys mut []string, at int) int {
|
||||
mut position := at
|
||||
if !isnil(n.children) {
|
||||
// Traverse children and insert
|
||||
// keys inbetween children
|
||||
for i in 0..n.size {
|
||||
child := &mapnode(n.children[i])
|
||||
position += child.subkeys(mut keys, position)
|
||||
keys[position] = n.keys[i]
|
||||
position++
|
||||
}
|
||||
// Insert the keys of the last child
|
||||
child := &mapnode(n.children[n.size])
|
||||
position += child.subkeys(mut keys, position)
|
||||
} else {
|
||||
// If leaf, insert keys
|
||||
for i in 0..n.size {
|
||||
keys[position + i] = n.keys[i]
|
||||
}
|
||||
position += n.size
|
||||
}
|
||||
// Return # of added keys
|
||||
return position - at
|
||||
}
|
||||
|
||||
pub fn (m &map) keys() []string {
|
||||
mut keys := [''].repeat(m.size)
|
||||
if isnil(m.root) || m.root.size == 0 {
|
||||
if m.value_bytes == 0 {
|
||||
return keys
|
||||
}
|
||||
m.root.subkeys(mut keys, 0)
|
||||
mut j := 0
|
||||
for i in 0 .. (m.range_cap + 1) {
|
||||
if m.probe_hash[i] != 0 {
|
||||
keys[j] = m.key_values[i].key
|
||||
j++
|
||||
}
|
||||
}
|
||||
return keys
|
||||
}
|
||||
|
||||
fn (n mut mapnode) free() {
|
||||
mut i := 0
|
||||
if isnil(n.children) {
|
||||
i = 0
|
||||
for i < n.size {
|
||||
i++
|
||||
}
|
||||
} else {
|
||||
i = 0
|
||||
for i < n.size {
|
||||
&mapnode(n.children[i]).free()
|
||||
i++
|
||||
}
|
||||
&mapnode(n.children[i]).free()
|
||||
pub fn (m mut map) set_load_factor(new_load_factor f32) {
|
||||
if new_load_factor > 1.0 {
|
||||
m.load_factor = 1.0
|
||||
}
|
||||
else if new_load_factor < 0.1 {
|
||||
m.load_factor = 0.1
|
||||
}
|
||||
else {
|
||||
m.load_factor = new_load_factor
|
||||
}
|
||||
// free(n)
|
||||
}
|
||||
|
||||
pub fn (m mut map) free() {
|
||||
if isnil(m.root) {
|
||||
return
|
||||
unsafe{
|
||||
free(m.key_values)
|
||||
}
|
||||
m.root.free()
|
||||
}
|
||||
|
||||
pub fn (m map) print() {
|
||||
println('<<<<<<<<')
|
||||
//for i := 0; i < m.entries.len; i++ {
|
||||
// entry := m.entries[i]
|
||||
// println('$entry.key => $entry.val')
|
||||
//}
|
||||
/*
|
||||
for i := 0; i < m.cap * m.value_bytes; i++ {
|
||||
b := m.table[i]
|
||||
print('$i: ')
|
||||
C.printf('%02x', b)
|
||||
println('')
|
||||
}
|
||||
*/
|
||||
println('>>>>>>>>>>')
|
||||
println('TODO')
|
||||
}
|
||||
|
||||
pub fn (m map_string) str() string {
|
||||
|
|
|
@ -0,0 +1,416 @@
|
|||
// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
|
||||
// Use of this source code is governed by an MIT license
|
||||
// that can be found in the LICENSE file.
|
||||
|
||||
module builtin
|
||||
|
||||
// import strings
|
||||
|
||||
// B-trees are balanced search trees with all leaves at
|
||||
// the same level. B-trees are generally faster than
|
||||
// binary search trees due to the better locality of
|
||||
// reference, since multiple keys are stored in one node.
|
||||
|
||||
// The number for `degree` has been picked through vigor-
|
||||
// ous benchmarking but can be changed to any number > 1.
|
||||
// `degree` determines the size of each node.
|
||||
const (
|
||||
degree = 6
|
||||
mid_index = degree - 1
|
||||
max_size = 2 * degree - 1
|
||||
children_bytes = sizeof(voidptr) * (max_size + 1)
|
||||
)
|
||||
|
||||
pub struct SortedMap {
|
||||
value_bytes int
|
||||
mut:
|
||||
root &mapnode
|
||||
pub mut:
|
||||
size int
|
||||
}
|
||||
|
||||
struct mapnode {
|
||||
mut:
|
||||
keys [11]string // TODO: Should use `max_size`
|
||||
values [11]voidptr // TODO: Should use `max_size`
|
||||
children &voidptr
|
||||
size int
|
||||
}
|
||||
|
||||
fn new_sorted_map(n, value_bytes int) SortedMap { // TODO: Remove `n`
|
||||
return SortedMap {
|
||||
value_bytes: value_bytes
|
||||
root: new_node()
|
||||
size: 0
|
||||
}
|
||||
}
|
||||
|
||||
fn new_sorted_map_init(n, value_bytes int, keys &string, values voidptr) SortedMap {
|
||||
mut out := new_sorted_map(n, value_bytes)
|
||||
for i in 0 .. n {
|
||||
out.set(keys[i], values + i * value_bytes)
|
||||
}
|
||||
return out
|
||||
}
|
||||
|
||||
// The tree is initialized with an empty node as root to
|
||||
// avoid having to check whether the root is null for
|
||||
// each insertion.
|
||||
fn new_node() &mapnode {
|
||||
return &mapnode {
|
||||
children: 0
|
||||
size: 0
|
||||
}
|
||||
}
|
||||
|
||||
// This implementation does proactive insertion, meaning
|
||||
// that splits are done top-down and not bottom-up.
|
||||
fn (m mut SortedMap) set(key string, value voidptr) {
|
||||
mut node := m.root
|
||||
mut child_index := 0
|
||||
mut parent := &mapnode(0)
|
||||
for {
|
||||
if node.size == max_size {
|
||||
if isnil(parent) {
|
||||
parent = new_node()
|
||||
m.root = parent
|
||||
}
|
||||
parent.split_child(child_index, mut node)
|
||||
if key == parent.keys[child_index] {
|
||||
C.memcpy(parent.values[child_index], value, m.value_bytes)
|
||||
return
|
||||
}
|
||||
node = if key < parent.keys[child_index] {
|
||||
&mapnode(parent.children[child_index])
|
||||
} else {
|
||||
&mapnode(parent.children[child_index + 1])
|
||||
}
|
||||
}
|
||||
mut i := 0
|
||||
for i < node.size && key > node.keys[i] { i++ }
|
||||
if i != node.size && key == node.keys[i] {
|
||||
C.memcpy(node.values[i], value, m.value_bytes)
|
||||
return
|
||||
}
|
||||
if isnil(node.children) {
|
||||
mut j := node.size - 1
|
||||
for j >= 0 && key < node.keys[j] {
|
||||
node.keys[j + 1] = node.keys[j]
|
||||
node.values[j + 1] = node.values[j]
|
||||
j--
|
||||
}
|
||||
node.keys[j + 1] = key
|
||||
node.values[j + 1] = malloc(m.value_bytes)
|
||||
C.memcpy(node.values[j + 1], value, m.value_bytes)
|
||||
node.size++
|
||||
m.size++
|
||||
return
|
||||
}
|
||||
parent = node
|
||||
child_index = i
|
||||
node = &mapnode(node.children[child_index])
|
||||
}
|
||||
}
|
||||
|
||||
fn (n mut mapnode) split_child(child_index int, y mut mapnode) {
|
||||
mut z := new_node()
|
||||
z.size = mid_index
|
||||
y.size = mid_index
|
||||
for j := mid_index - 1; j >= 0; j-- {
|
||||
z.keys[j] = y.keys[j + degree]
|
||||
z.values[j] = y.values[j + degree]
|
||||
}
|
||||
if !isnil(y.children) {
|
||||
z.children = &voidptr(malloc(children_bytes))
|
||||
for jj := degree - 1; jj >= 0; jj-- {
|
||||
z.children[jj] = y.children[jj + degree]
|
||||
}
|
||||
}
|
||||
if isnil(n.children) {
|
||||
n.children = &voidptr(malloc(children_bytes))
|
||||
}
|
||||
n.children[n.size + 1] = n.children[n.size]
|
||||
for j := n.size; j > child_index; j-- {
|
||||
n.keys[j] = n.keys[j - 1]
|
||||
n.values[j] = n.values[j - 1]
|
||||
n.children[j] = n.children[j - 1]
|
||||
}
|
||||
n.keys[child_index] = y.keys[mid_index]
|
||||
n.values[child_index] = y.values[mid_index]
|
||||
n.children[child_index] = voidptr(y)
|
||||
n.children[child_index + 1] = voidptr(z)
|
||||
n.size++
|
||||
}
|
||||
|
||||
fn (m SortedMap) get(key string, out voidptr) bool {
|
||||
mut node := m.root
|
||||
for {
|
||||
mut i := node.size - 1
|
||||
for i >= 0 && key < node.keys[i] { i-- }
|
||||
if i != -1 && key == node.keys[i] {
|
||||
C.memcpy(out, node.values[i], m.value_bytes)
|
||||
return true
|
||||
}
|
||||
if isnil(node.children) {
|
||||
break
|
||||
}
|
||||
node = &mapnode(node.children[i + 1])
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
fn (m SortedMap) exists(key string) bool {
|
||||
if isnil(m.root) { // TODO: find out why root can be nil
|
||||
return false
|
||||
}
|
||||
mut node := m.root
|
||||
for {
|
||||
mut i := node.size - 1
|
||||
for i >= 0 && key < node.keys[i] { i-- }
|
||||
if i != -1 && key == node.keys[i] {
|
||||
return true
|
||||
}
|
||||
if isnil(node.children) {
|
||||
break
|
||||
}
|
||||
node = &mapnode(node.children[i + 1])
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
fn (n mapnode) find_key(k string) int {
|
||||
mut idx := 0
|
||||
for idx < n.size && n.keys[idx] < k {
|
||||
idx++
|
||||
}
|
||||
return idx
|
||||
}
|
||||
|
||||
fn (n mut mapnode) remove_key(k string) bool {
|
||||
idx := n.find_key(k)
|
||||
if idx < n.size && n.keys[idx] == k {
|
||||
if isnil(n.children) {
|
||||
n.remove_from_leaf(idx)
|
||||
} else {
|
||||
n.remove_from_non_leaf(idx)
|
||||
}
|
||||
return true
|
||||
} else {
|
||||
if isnil(n.children) {
|
||||
return false
|
||||
}
|
||||
flag := if idx == n.size {true} else {false}
|
||||
if (&mapnode(n.children[idx])).size < degree {
|
||||
n.fill(idx)
|
||||
}
|
||||
|
||||
if flag && idx > n.size {
|
||||
return (&mapnode(n.children[idx - 1])).remove_key(k)
|
||||
} else {
|
||||
return (&mapnode(n.children[idx])).remove_key(k)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn (n mut mapnode) remove_from_leaf(idx int) {
|
||||
for i := idx + 1; i < n.size; i++ {
|
||||
n.keys[i - 1] = n.keys[i]
|
||||
n.values[i - 1] = n.values[i]
|
||||
}
|
||||
n.size--
|
||||
}
|
||||
|
||||
fn (n mut mapnode) remove_from_non_leaf(idx int) {
|
||||
k := n.keys[idx]
|
||||
if &mapnode(n.children[idx]).size >= degree {
|
||||
mut current := &mapnode(n.children[idx])
|
||||
for !isnil(current.children) {
|
||||
current = &mapnode(current.children[current.size])
|
||||
}
|
||||
predecessor := current.keys[current.size - 1]
|
||||
n.keys[idx] = predecessor
|
||||
n.values[idx] = current.values[current.size - 1]
|
||||
(&mapnode(n.children[idx])).remove_key(predecessor)
|
||||
} else if &mapnode(n.children[idx + 1]).size >= degree {
|
||||
mut current := &mapnode(n.children[idx + 1])
|
||||
for !isnil(current.children) {
|
||||
current = &mapnode(current.children[0])
|
||||
}
|
||||
successor := current.keys[0]
|
||||
n.keys[idx] = successor
|
||||
n.values[idx] = current.values[0]
|
||||
(&mapnode(n.children[idx + 1])).remove_key(successor)
|
||||
} else {
|
||||
n.merge(idx)
|
||||
(&mapnode(n.children[idx])).remove_key(k)
|
||||
}
|
||||
}
|
||||
|
||||
fn (n mut mapnode) fill(idx int) {
|
||||
if idx != 0 && &mapnode(n.children[idx - 1]).size >= degree {
|
||||
n.borrow_from_prev(idx)
|
||||
} else if idx != n.size && &mapnode(n.children[idx + 1]).size >= degree {
|
||||
n.borrow_from_next(idx)
|
||||
} else if idx != n.size {
|
||||
n.merge(idx)
|
||||
} else {
|
||||
n.merge(idx - 1)
|
||||
}
|
||||
}
|
||||
|
||||
fn (n mut mapnode) borrow_from_prev(idx int) {
|
||||
mut child := &mapnode(n.children[idx])
|
||||
mut sibling := &mapnode(n.children[idx - 1])
|
||||
for i := child.size - 1; i >= 0; i-- {
|
||||
child.keys[i + 1] = child.keys[i]
|
||||
child.values[i + 1] = child.values[i]
|
||||
}
|
||||
if !isnil(child.children) {
|
||||
for i := child.size; i >= 0; i-- {
|
||||
child.children[i + 1] = child.children[i]
|
||||
}
|
||||
}
|
||||
child.keys[0] = n.keys[idx - 1]
|
||||
child.values[0] = n.values[idx - 1]
|
||||
if !isnil(child.children) {
|
||||
child.children[0] = sibling.children[sibling.size]
|
||||
}
|
||||
n.keys[idx - 1] = sibling.keys[sibling.size - 1]
|
||||
n.values[idx - 1] = sibling.values[sibling.size - 1]
|
||||
child.size++
|
||||
sibling.size--
|
||||
}
|
||||
|
||||
fn (n mut mapnode) borrow_from_next(idx int) {
|
||||
mut child := &mapnode(n.children[idx])
|
||||
mut sibling := &mapnode(n.children[idx + 1])
|
||||
child.keys[child.size] = n.keys[idx]
|
||||
child.values[child.size] = n.values[idx]
|
||||
if !isnil(child.children) {
|
||||
child.children[child.size + 1] = sibling.children[0]
|
||||
}
|
||||
n.keys[idx] = sibling.keys[0]
|
||||
n.values[idx] = sibling.values[0]
|
||||
for i := 1; i < sibling.size; i++ {
|
||||
sibling.keys[i - 1] = sibling.keys[i]
|
||||
sibling.values[i - 1] = sibling.values[i]
|
||||
}
|
||||
if !isnil(sibling.children) {
|
||||
for i := 1; i <= sibling.size; i++ {
|
||||
sibling.children[i - 1] = sibling.children[i]
|
||||
}
|
||||
}
|
||||
child.size++
|
||||
sibling.size--
|
||||
}
|
||||
|
||||
fn (n mut mapnode) merge(idx int) {
|
||||
mut child := &mapnode(n.children[idx])
|
||||
sibling := &mapnode(n.children[idx + 1])
|
||||
child.keys[mid_index] = n.keys[idx]
|
||||
child.values[mid_index] = n.values[idx]
|
||||
for i := 0; i < sibling.size; i++ {
|
||||
child.keys[i + degree] = sibling.keys[i]
|
||||
child.values[i + degree] = sibling.values[i]
|
||||
}
|
||||
if !isnil(child.children) {
|
||||
for i := 0; i <= sibling.size; i++ {
|
||||
child.children[i + degree] = sibling.children[i]
|
||||
}
|
||||
}
|
||||
for i := idx + 1; i < n.size; i++ {
|
||||
n.keys[i - 1] = n.keys[i]
|
||||
n.values[i - 1] = n.values[i]
|
||||
}
|
||||
for i := idx + 2; i <= n.size; i++ {
|
||||
n.children[i - 1] = n.children[i]
|
||||
}
|
||||
child.size += sibling.size + 1
|
||||
n.size--
|
||||
// free(sibling)
|
||||
}
|
||||
|
||||
pub fn (m mut SortedMap) delete(key string) {
|
||||
if m.root.size == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
removed := m.root.remove_key(key)
|
||||
if removed {
|
||||
m.size--
|
||||
}
|
||||
|
||||
if m.root.size == 0 {
|
||||
// tmp := t.root
|
||||
if isnil(m.root.children) {
|
||||
return
|
||||
} else {
|
||||
m.root = &mapnode(m.root.children[0])
|
||||
}
|
||||
// free(tmp)
|
||||
}
|
||||
}
|
||||
|
||||
// Insert all keys of the subtree into array `keys`
|
||||
// starting at `at`. Keys are inserted in order.
|
||||
fn (n mapnode) subkeys(keys mut []string, at int) int {
|
||||
mut position := at
|
||||
if !isnil(n.children) {
|
||||
// Traverse children and insert
|
||||
// keys inbetween children
|
||||
for i in 0..n.size {
|
||||
child := &mapnode(n.children[i])
|
||||
position += child.subkeys(mut keys, position)
|
||||
keys[position] = n.keys[i]
|
||||
position++
|
||||
}
|
||||
// Insert the keys of the last child
|
||||
child := &mapnode(n.children[n.size])
|
||||
position += child.subkeys(mut keys, position)
|
||||
} else {
|
||||
// If leaf, insert keys
|
||||
for i in 0..n.size {
|
||||
keys[position + i] = n.keys[i]
|
||||
}
|
||||
position += n.size
|
||||
}
|
||||
// Return # of added keys
|
||||
return position - at
|
||||
}
|
||||
|
||||
pub fn (m &SortedMap) keys() []string {
|
||||
mut keys := [''].repeat(m.size)
|
||||
if isnil(m.root) || m.root.size == 0 {
|
||||
return keys
|
||||
}
|
||||
m.root.subkeys(mut keys, 0)
|
||||
return keys
|
||||
}
|
||||
|
||||
fn (n mut mapnode) free() {
|
||||
println('TODO')
|
||||
}
|
||||
|
||||
pub fn (m mut SortedMap) free() {
|
||||
if isnil(m.root) {
|
||||
return
|
||||
}
|
||||
m.root.free()
|
||||
}
|
||||
|
||||
pub fn (m SortedMap) print() {
|
||||
println('TODO')
|
||||
}
|
||||
|
||||
// pub fn (m map_string) str() string {
|
||||
// if m.size == 0 {
|
||||
// return '{}'
|
||||
// }
|
||||
// mut sb := strings.new_builder(50)
|
||||
// sb.writeln('{')
|
||||
// for key, val in m {
|
||||
// sb.writeln(' "$key" => "$val"')
|
||||
// }
|
||||
// sb.writeln('}')
|
||||
// return sb.str()
|
||||
// }
|
Loading…
Reference in New Issue