atof: lots of fixes
* removed sprintf for f64 and f32 use * removed all pointers from the code, used unions instead * solved module name problem * fixed tests on vlib/math * fix for alpine-linux math test * small fix on byte allocation for ftoapull/3852/head
parent
c4e83faa57
commit
39429f7ac9
|
@ -2,37 +2,64 @@
|
|||
// Use of this source code is governed by an MIT license
|
||||
// that can be found in the LICENSE file.
|
||||
module builtin
|
||||
import strconv.ftoa
|
||||
|
||||
#include <float.h>
|
||||
|
||||
// ----- f64 to string functions -----
|
||||
|
||||
// str return a f64 as string in scientific notation, auto display digits limit
|
||||
[inline]
|
||||
pub fn (d f64) str() string {
|
||||
buf := malloc(sizeof(double) * 5 + 1) // TODO
|
||||
C.sprintf(charptr(buf), '%f', d)
|
||||
return tos(buf, vstrlen(buf))
|
||||
return ftoa.ftoa_64(d)
|
||||
}
|
||||
|
||||
pub fn (d f32) str() string {
|
||||
buf := malloc(sizeof(double) * 5 + 1) // TODO
|
||||
C.sprintf((buf), '%f', d)
|
||||
return tos(buf, vstrlen(buf))
|
||||
}
|
||||
|
||||
// return a string of the input f64 in scientific notation with digit_num digits displayed
|
||||
// return a string of the input f64 in scientific notation with digit_num deciamals displayed, max 17 digits
|
||||
[inline]
|
||||
pub fn (x f64) strsci(digit_num int) string {
|
||||
buf := malloc(digit_num * 2 + 2) // TODO
|
||||
conf_str := '%0.' + digit_num.str() + 'e'
|
||||
C.sprintf((buf), (conf_str.str), x)
|
||||
tmpstr := tos(buf, vstrlen(buf))
|
||||
return tmpstr
|
||||
mut n_digit := digit_num
|
||||
if n_digit < 1 {
|
||||
n_digit = 1
|
||||
} else if n_digit > 17 {
|
||||
n_digit = 17
|
||||
}
|
||||
return ftoa.f64_to_str(x,n_digit)
|
||||
}
|
||||
|
||||
// return a long string of the input f64, max
|
||||
// return a decimal notation of the input f64
|
||||
[inline]
|
||||
pub fn (x f64) strlong() string {
|
||||
buf := malloc(18 + 32) // TODO
|
||||
C.sprintf((buf), '%0.30lf', x)
|
||||
tmpstr := tos(buf, vstrlen(buf))
|
||||
return tmpstr
|
||||
return ftoa.f64_to_str_l(x)
|
||||
}
|
||||
|
||||
// ----- f32 to string functions -----
|
||||
|
||||
// str return a f32 as string in scientific notation, auto display digits limit
|
||||
[inline]
|
||||
pub fn (d f32) str() string {
|
||||
return ftoa.ftoa_32(d)
|
||||
}
|
||||
|
||||
// return a string of the input f32 in scientific notation with digit_num deciamals displayed, max 8 digits
|
||||
[inline]
|
||||
pub fn (x f32) strsci(digit_num int) string {
|
||||
mut n_digit := digit_num
|
||||
if n_digit < 1 {
|
||||
n_digit = 1
|
||||
} else if n_digit > 8 {
|
||||
n_digit = 8
|
||||
}
|
||||
return ftoa.f32_to_str(x,n_digit)
|
||||
}
|
||||
|
||||
// return a decimal notation of the input f32
|
||||
[inline]
|
||||
pub fn (x f32) strlong() string {
|
||||
return ftoa.f32_to_str_l(x)
|
||||
}
|
||||
|
||||
// ----- C functions -----
|
||||
|
||||
[inline]
|
||||
fn f32_abs(a f32) f32 {
|
||||
return if a < 0 { -a } else { a }
|
||||
|
|
|
@ -1,6 +1,13 @@
|
|||
import math
|
||||
import math.complex as cmplx
|
||||
|
||||
fn tst_res(str1 string, str2 string) bool {
|
||||
if (math.abs(str1.f64() - str2.f64())) < 1e-5 {
|
||||
return true
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
fn test_complex_addition() {
|
||||
// Test is based on and verified from practice examples of Khan Academy
|
||||
// https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers
|
||||
|
@ -177,14 +184,14 @@ fn test_complex_mod() {
|
|||
mut c1 := cmplx.complex(5,7)
|
||||
mut result := c1.mod()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq('8.602325')
|
||||
assert tst_res(result.str(), '8.602325')
|
||||
c1 = cmplx.complex(-3,4)
|
||||
result = c1.mod()
|
||||
assert result == 5
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
result = c1.mod()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq('2.236068')
|
||||
assert tst_res(result.str(), '2.236068')
|
||||
}
|
||||
|
||||
fn test_complex_pow() {
|
||||
|
@ -269,17 +276,17 @@ fn test_complex_arg() {
|
|||
mut c2 := cmplx.complex(2.152033,0.950547)
|
||||
mut result := c1.arg()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq('0.950547')
|
||||
assert tst_res(result.str(), '0.950547')
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c2 = cmplx.complex(1.609438,2.214297)
|
||||
result = c1.arg()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq('2.214297')
|
||||
assert tst_res(result.str(), '2.214297')
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c2 = cmplx.complex(0.804719,-2.034444)
|
||||
result = c1.arg()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq('-2.034444')
|
||||
assert tst_res(result.str(), '-2.034444')
|
||||
}
|
||||
|
||||
fn test_complex_log() {
|
||||
|
|
|
@ -1,5 +1,12 @@
|
|||
module math
|
||||
|
||||
fn tst_res(str1 string, str2 string) bool {
|
||||
if (math.abs(str1.f64() - str2.f64())) < 1e-5 {
|
||||
return true
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
fn test_gcd() {
|
||||
assert gcd(6, 9) == 3
|
||||
assert gcd(6, -9) == 3
|
||||
|
@ -39,8 +46,10 @@ fn test_gamma() {
|
|||
assert gamma(1) == 1
|
||||
assert gamma(5) == 24
|
||||
sval := '2.453737'
|
||||
assert log_gamma(4.5).str() == sval
|
||||
assert log(gamma(4.5)).str() == sval
|
||||
assert tst_res(log_gamma(4.5).str(), sval)
|
||||
assert tst_res(log(gamma(4.5)).str(), sval)
|
||||
//assert log_gamma(4.5).str() == sval
|
||||
//assert log(gamma(4.5)).str() == sval
|
||||
assert abs( log_gamma(4.5) - log(gamma(4.5)) ) < 0.000001
|
||||
// assert log_gamma(4.5) == log(gamma(4.5)) /* <-- fails on alpine/musl
|
||||
}
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import math.stats as stats
|
||||
import math
|
||||
|
||||
fn test_freq() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
|
@ -11,20 +12,27 @@ fn test_freq() {
|
|||
assert o == 0
|
||||
}
|
||||
|
||||
fn tst_res(str1 string, str2 string) bool {
|
||||
if (math.abs(str1.f64() - str2.f64())) < 1e-5 {
|
||||
return true
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
fn test_mean() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut data := [f64(10.0),f64(4.45),f64(5.9),f64(2.7)]
|
||||
mut o := stats.mean(data)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert o.str().eq('5.762500')
|
||||
assert tst_res(o.str(), '5.762500')
|
||||
data = [f64(-3.0),f64(67.31),f64(4.4),f64(1.89)]
|
||||
o = stats.mean(data)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert o.str().eq('17.650000')
|
||||
assert tst_res(o.str(), '17.650000')
|
||||
data = [f64(12.0),f64(7.88),f64(76.122),f64(54.83)]
|
||||
o = stats.mean(data)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert o.str().eq('37.708000')
|
||||
assert tst_res(o.str(), '37.708000')
|
||||
}
|
||||
|
||||
fn test_geometric_mean() {
|
||||
|
@ -32,7 +40,7 @@ fn test_geometric_mean() {
|
|||
mut data := [f64(10.0),f64(4.45),f64(5.9),f64(2.7)]
|
||||
mut o := stats.geometric_mean(data)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert o.str().eq('5.159932')
|
||||
assert tst_res(o.str(),'5.15993')
|
||||
data = [f64(-3.0),f64(67.31),f64(4.4),f64(1.89)]
|
||||
o = stats.geometric_mean(data)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
|
@ -40,7 +48,7 @@ fn test_geometric_mean() {
|
|||
data = [f64(12.0),f64(7.88),f64(76.122),f64(54.83)]
|
||||
o = stats.geometric_mean(data)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert o.str().eq('25.064496')
|
||||
assert tst_res(o.str(),'25.064496')
|
||||
}
|
||||
|
||||
fn test_harmonic_mean() {
|
||||
|
@ -48,15 +56,15 @@ fn test_harmonic_mean() {
|
|||
mut data := [f64(10.0),f64(4.45),f64(5.9),f64(2.7)]
|
||||
mut o := stats.harmonic_mean(data)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert o.str().eq('4.626519')
|
||||
assert tst_res(o.str(), '4.626519')
|
||||
data = [f64(-3.0),f64(67.31),f64(4.4),f64(1.89)]
|
||||
o = stats.harmonic_mean(data)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert o.str().eq('9.134577')
|
||||
assert tst_res(o.str(), '9.134577')
|
||||
data = [f64(12.0),f64(7.88),f64(76.122),f64(54.83)]
|
||||
o = stats.harmonic_mean(data)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert o.str().eq('16.555477')
|
||||
assert tst_res(o.str(), '16.555477')
|
||||
}
|
||||
|
||||
fn test_median() {
|
||||
|
@ -67,15 +75,15 @@ fn test_median() {
|
|||
mut data := [f64(2.7),f64(4.45),f64(5.9),f64(10.0)]
|
||||
mut o := stats.median(data)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert o.str().eq('5.175000')
|
||||
assert tst_res(o.str(), '5.175000')
|
||||
data = [f64(-3.0),f64(1.89),f64(4.4),f64(67.31)]
|
||||
o = stats.median(data)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert o.str().eq('3.145000')
|
||||
assert tst_res(o.str(), '3.145000')
|
||||
data = [f64(7.88),f64(12.0),f64(54.83),f64(76.122)]
|
||||
o = stats.median(data)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert o.str().eq('33.415000')
|
||||
assert tst_res(o.str(), '33.415000')
|
||||
|
||||
// Odd
|
||||
data = [f64(2.7),f64(4.45),f64(5.9),f64(10.0),f64(22)]
|
||||
|
@ -108,15 +116,15 @@ fn test_rms() {
|
|||
mut data := [f64(10.0),f64(4.45),f64(5.9),f64(2.7)]
|
||||
mut o := stats.rms(data)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert o.str().eq('6.362046')
|
||||
assert tst_res(o.str(), '6.362046')
|
||||
data = [f64(-3.0),f64(67.31),f64(4.4),f64(1.89)]
|
||||
o = stats.rms(data)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert o.str().eq('33.773393')
|
||||
assert tst_res(o.str(), '33.773393')
|
||||
data = [f64(12.0),f64(7.88),f64(76.122),f64(54.83)]
|
||||
o = stats.rms(data)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert o.str().eq('47.452561')
|
||||
assert tst_res(o.str(), '47.452561')
|
||||
}
|
||||
|
||||
fn test_population_variance() {
|
||||
|
@ -124,15 +132,15 @@ fn test_population_variance() {
|
|||
mut data := [f64(10.0),f64(4.45),f64(5.9),f64(2.7)]
|
||||
mut o := stats.population_variance(data)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert o.str().eq('7.269219')
|
||||
assert tst_res(o.str(), '7.269219')
|
||||
data = [f64(-3.0),f64(67.31),f64(4.4),f64(1.89)]
|
||||
o = stats.population_variance(data)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert o.str().eq('829.119550')
|
||||
assert tst_res(o.str(), '829.119550')
|
||||
data = [f64(12.0),f64(7.88),f64(76.122),f64(54.83)]
|
||||
o = stats.population_variance(data)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert o.str().eq('829.852282')
|
||||
assert tst_res(o.str(), '829.852282')
|
||||
}
|
||||
|
||||
fn test_sample_variance() {
|
||||
|
@ -140,15 +148,15 @@ fn test_sample_variance() {
|
|||
mut data := [f64(10.0),f64(4.45),f64(5.9),f64(2.7)]
|
||||
mut o := stats.sample_variance(data)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert o.str().eq('9.692292')
|
||||
assert tst_res(o.str(), '9.692292')
|
||||
data = [f64(-3.0),f64(67.31),f64(4.4),f64(1.89)]
|
||||
o = stats.sample_variance(data)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert o.str().eq('1105.492733')
|
||||
assert tst_res(o.str(), '1105.492733')
|
||||
data = [f64(12.0),f64(7.88),f64(76.122),f64(54.83)]
|
||||
o = stats.sample_variance(data)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert o.str().eq('1106.469709')
|
||||
assert tst_res(o.str(), '1106.469709')
|
||||
}
|
||||
|
||||
fn test_population_stddev() {
|
||||
|
@ -156,15 +164,15 @@ fn test_population_stddev() {
|
|||
mut data := [f64(10.0),f64(4.45),f64(5.9),f64(2.7)]
|
||||
mut o := stats.population_stddev(data)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert o.str().eq('2.696149')
|
||||
assert tst_res(o.str(), '2.696149')
|
||||
data = [f64(-3.0),f64(67.31),f64(4.4),f64(1.89)]
|
||||
o = stats.population_stddev(data)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert o.str().eq('28.794436')
|
||||
assert tst_res(o.str(), '28.794436')
|
||||
data = [f64(12.0),f64(7.88),f64(76.122),f64(54.83)]
|
||||
o = stats.population_stddev(data)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert o.str().eq('28.807157')
|
||||
assert tst_res(o.str(), '28.807157')
|
||||
}
|
||||
|
||||
fn test_sample_stddev() {
|
||||
|
@ -172,15 +180,15 @@ fn test_sample_stddev() {
|
|||
mut data := [f64(10.0),f64(4.45),f64(5.9),f64(2.7)]
|
||||
mut o := stats.sample_stddev(data)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert o.str().eq('3.113245')
|
||||
assert tst_res(o.str(), '3.113245')
|
||||
data = [f64(-3.0),f64(67.31),f64(4.4),f64(1.89)]
|
||||
o = stats.sample_stddev(data)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert o.str().eq('33.248951')
|
||||
assert tst_res(o.str(), '33.248951')
|
||||
data = [f64(12.0),f64(7.88),f64(76.122),f64(54.83)]
|
||||
o = stats.sample_stddev(data)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert o.str().eq('33.263639')
|
||||
assert tst_res(o.str(), '33.263639')
|
||||
}
|
||||
|
||||
fn test_mean_absdev() {
|
||||
|
@ -188,15 +196,15 @@ fn test_mean_absdev() {
|
|||
mut data := [f64(10.0),f64(4.45),f64(5.9),f64(2.7)]
|
||||
mut o := stats.mean_absdev(data)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert o.str().eq('2.187500')
|
||||
assert tst_res(o.str(), '2.187500')
|
||||
data = [f64(-3.0),f64(67.31),f64(4.4),f64(1.89)]
|
||||
o = stats.mean_absdev(data)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert o.str().eq('24.830000')
|
||||
assert tst_res(o.str(), '24.830000')
|
||||
data = [f64(12.0),f64(7.88),f64(76.122),f64(54.83)]
|
||||
o = stats.mean_absdev(data)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert o.str().eq('27.768000')
|
||||
assert tst_res(o.str(), '27.768000')
|
||||
}
|
||||
|
||||
fn test_min() {
|
||||
|
|
|
@ -19,6 +19,13 @@
|
|||
*
|
||||
**********************************************************************/
|
||||
module strconv
|
||||
|
||||
union Float64u {
|
||||
mut:
|
||||
f f64
|
||||
u u64 = u64(0)
|
||||
}
|
||||
|
||||
/**********************************************************************
|
||||
*
|
||||
* 96 bit operation utilities
|
||||
|
@ -149,25 +156,6 @@ fn is_exp(x byte) bool {
|
|||
return (x == `E` || x == `e`) == true
|
||||
}
|
||||
|
||||
/*
|
||||
// return a string of the input f64 in scientific notation with digit_num digits displayed
|
||||
pub fn strsci(x f64, digit_num int) string{
|
||||
buf := malloc(digit_num*2+2)// TODO
|
||||
conf_str := '%0.'+digit_num.str()+'e'
|
||||
C.sprintf(charptr(buf), charptr(conf_str.str), x)
|
||||
tmpstr := tos(buf, vstrlen(buf))
|
||||
return tmpstr
|
||||
}
|
||||
|
||||
// return a long string of the input f64, max
|
||||
pub fn strlong(x f64) string {
|
||||
buf := malloc(18+32)// TODO
|
||||
C.sprintf(charptr(buf),"%0.30lf",x)
|
||||
tmpstr := tos(buf, vstrlen(buf))
|
||||
return tmpstr
|
||||
}
|
||||
*/
|
||||
|
||||
/**********************************************************************
|
||||
*
|
||||
* Support struct
|
||||
|
@ -545,29 +533,30 @@ pub fn atof64(s string) f64 {
|
|||
mut pn := PrepNumber{
|
||||
}
|
||||
mut res_parsing := 0
|
||||
mut result := f64(0)
|
||||
result = f64(0.0)
|
||||
mut res_ptr := *u64(&result)
|
||||
mut res := Float64u{}
|
||||
|
||||
res_parsing,pn = parser(s + ' ') // TODO: need an extra char for now
|
||||
// println(pn)
|
||||
match res_parsing {
|
||||
PARSER_OK {
|
||||
*res_ptr = converter(mut pn)
|
||||
res.u = converter(mut pn)
|
||||
}
|
||||
PARSER_PZERO {
|
||||
*res_ptr = DOUBLE_PLUS_ZERO
|
||||
res.u = DOUBLE_PLUS_ZERO
|
||||
}
|
||||
PARSER_MZERO {
|
||||
*res_ptr = DOUBLE_MINUS_ZERO
|
||||
res.u = DOUBLE_MINUS_ZERO
|
||||
}
|
||||
PARSER_PINF {
|
||||
*res_ptr = DOUBLE_PLUS_INFINITY
|
||||
res.u = DOUBLE_PLUS_INFINITY
|
||||
}
|
||||
PARSER_MINF {
|
||||
*res_ptr = DOUBLE_MINUS_INFINITY
|
||||
res.u = DOUBLE_MINUS_INFINITY
|
||||
}
|
||||
else {
|
||||
}}
|
||||
return result
|
||||
return res.f
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -3,7 +3,6 @@
|
|||
* String to float Test
|
||||
*
|
||||
**********************************************************************/
|
||||
|
||||
import (
|
||||
strconv
|
||||
strconv.atofq
|
||||
|
@ -41,15 +40,19 @@ fn test_atof() {
|
|||
// slow atof
|
||||
assert strconv.atof64(src_num_str[c]).strlong() == x.strlong()
|
||||
|
||||
|
||||
// quick atof
|
||||
mut s1 := (atofq.atof_quick(src_num_str[c]).str())
|
||||
s1 = s1[..src_num_str[c].len]
|
||||
mut s2 := (x.str())
|
||||
s2 = s2[..src_num_str[c].len]
|
||||
assert s1 == s2
|
||||
delta := s1.f64() - s2.f64()
|
||||
//println("$s1 $s2 $delta")
|
||||
assert delta < f64(1e-16)
|
||||
|
||||
// test C.atof
|
||||
assert x.strsci(18) == f64(C.atof(src_num_str[c].str)).strsci(18)
|
||||
n1 := x.strsci(18)
|
||||
n2 := f64(C.atof(src_num_str[c].str)).strsci(18)
|
||||
//println("$n1 $n2")
|
||||
assert n1 == n2
|
||||
}
|
||||
|
||||
// check conversion case 2 string <==> f64
|
||||
|
@ -71,4 +74,5 @@ fn test_atof() {
|
|||
// DOUBLE_MINUS_ZERO
|
||||
f1=-0.0
|
||||
assert *ptr == u64(0x8000000000000000)
|
||||
//println("DONE!")
|
||||
}
|
||||
|
|
|
@ -18,17 +18,23 @@
|
|||
|
||||
module atofq
|
||||
|
||||
import strconv
|
||||
|
||||
// same used in atof, here only for references
|
||||
// const(
|
||||
// DOUBLE_PLUS_ZERO = u64(0x0000000000000000)
|
||||
// DOUBLE_MINUS_ZERO = 0x8000000000000000
|
||||
// DOUBLE_PLUS_INFINITY = 0x7FF0000000000000
|
||||
// DOUBLE_MINUS_INFINITY = 0xFFF0000000000000
|
||||
const(
|
||||
DOUBLE_PLUS_ZERO = u64(0x0000000000000000)
|
||||
DOUBLE_MINUS_ZERO = 0x8000000000000000
|
||||
DOUBLE_PLUS_INFINITY = 0x7FF0000000000000
|
||||
DOUBLE_MINUS_INFINITY = 0xFFF0000000000000
|
||||
)
|
||||
|
||||
union Float64u {
|
||||
mut:
|
||||
f f64
|
||||
u u64 = u64(0)
|
||||
}
|
||||
|
||||
// atof_quick return a f64 number from a string in a quick way
|
||||
pub fn atof_quick(s string) f64 {
|
||||
mut f := f64(0.0) // result
|
||||
mut f := Float64u{} // result
|
||||
mut sign := f64(1.0) // result sign
|
||||
mut i := 0 // index
|
||||
// skip white spaces
|
||||
|
@ -47,34 +53,32 @@ pub fn atof_quick(s string) f64 {
|
|||
}
|
||||
// infinite
|
||||
if s[i] == `i` && i + 2 < s.len && s[i + 1] == `n` && s[i + 2] == `f` {
|
||||
mut d := *u64(&f)
|
||||
if sign > 0.0 {
|
||||
*d = strconv.DOUBLE_PLUS_INFINITY
|
||||
f.u = DOUBLE_PLUS_INFINITY
|
||||
}
|
||||
else {
|
||||
*d = strconv.DOUBLE_MINUS_INFINITY
|
||||
f.u = DOUBLE_MINUS_INFINITY
|
||||
}
|
||||
return f
|
||||
return f.f
|
||||
}
|
||||
// skip zeros
|
||||
for i < s.len && s[i] == `0` {
|
||||
i++
|
||||
// we have a zero, manage it
|
||||
if i >= s.len {
|
||||
mut d := *u64(&f)
|
||||
if sign > 0.0 {
|
||||
*d = strconv.DOUBLE_PLUS_ZERO
|
||||
f.u = DOUBLE_PLUS_ZERO
|
||||
}
|
||||
else {
|
||||
*d = strconv.DOUBLE_MINUS_ZERO
|
||||
f.u = DOUBLE_MINUS_ZERO
|
||||
}
|
||||
return f
|
||||
return f.f
|
||||
}
|
||||
}
|
||||
// integer part
|
||||
for i < s.len && (s[i] >= `0` && s[i] <= `9`) {
|
||||
f *= f64(10.0)
|
||||
f += f64(s[i] - `0`)
|
||||
f.f *= f64(10.0)
|
||||
f.f += f64(s[i] - `0`)
|
||||
i++
|
||||
}
|
||||
// decimal point
|
||||
|
@ -82,7 +86,7 @@ pub fn atof_quick(s string) f64 {
|
|||
i++
|
||||
mut frac_mul := f64(0.1)
|
||||
for i < s.len && (s[i] >= `0` && s[i] <= `9`) {
|
||||
f += f64(s[i] - `0`) * frac_mul
|
||||
f.f += f64(s[i] - `0`) * frac_mul
|
||||
frac_mul *= f64(0.1)
|
||||
i++
|
||||
}
|
||||
|
@ -113,41 +117,36 @@ pub fn atof_quick(s string) f64 {
|
|||
}
|
||||
if exp_sign == 1 {
|
||||
if exp > pos_exp.len {
|
||||
mut d := *u64(&f)
|
||||
if sign > 0 {
|
||||
*d = strconv.DOUBLE_PLUS_INFINITY
|
||||
f.u = DOUBLE_PLUS_INFINITY
|
||||
}
|
||||
else {
|
||||
*d = strconv.DOUBLE_MINUS_INFINITY
|
||||
f.u = DOUBLE_MINUS_INFINITY
|
||||
}
|
||||
return f
|
||||
return f.f
|
||||
}
|
||||
tmp_mul := f64(0.0)
|
||||
mut ptr_d := *u64(&tmp_mul)
|
||||
*ptr_d = pos_exp[exp]
|
||||
tmp_mul := Float64u{u: pos_exp[exp]}
|
||||
// C.printf("exp: %d [0x%016llx] %f,",exp,pos_exp[exp],tmp_mul)
|
||||
f = f * tmp_mul
|
||||
f.f = f.f * tmp_mul.f
|
||||
}
|
||||
else {
|
||||
if exp > neg_exp.len {
|
||||
mut d := *u64(&f)
|
||||
if (sign > 0) {
|
||||
*d = strconv.DOUBLE_PLUS_ZERO
|
||||
f.u = DOUBLE_PLUS_ZERO
|
||||
}
|
||||
else {
|
||||
*d = strconv.DOUBLE_MINUS_ZERO
|
||||
f.u = DOUBLE_MINUS_ZERO
|
||||
}
|
||||
return f
|
||||
return f.f
|
||||
}
|
||||
tmp_mul := f64(0.0)
|
||||
mut ptr_d := *u64(&tmp_mul)
|
||||
*ptr_d = neg_exp[exp]
|
||||
tmp_mul := Float64u{u: neg_exp[exp]}
|
||||
|
||||
// C.printf("exp: %d [0x%016llx] %f,",exp,pos_exp[exp],tmp_mul)
|
||||
f = f * tmp_mul
|
||||
f.f = f.f * tmp_mul.f
|
||||
}
|
||||
}
|
||||
f = f * sign
|
||||
return f
|
||||
f.f = f.f * sign
|
||||
return f.f
|
||||
}
|
||||
|
||||
const (
|
||||
|
|
|
@ -59,8 +59,8 @@ test_cases_f32 = [
|
|||
exp_result_f32 = [
|
||||
"0e+00",
|
||||
"-0e+00",
|
||||
"NaN",
|
||||
"NaN",
|
||||
"nan",
|
||||
"nan",
|
||||
"+inf",
|
||||
"-inf",
|
||||
"1.e+00",
|
||||
|
@ -111,8 +111,8 @@ test_cases_f64 = [
|
|||
exp_result_f64 = [
|
||||
"0e+00",
|
||||
"-0e+00",
|
||||
"NaN",
|
||||
"NaN",
|
||||
"nan",
|
||||
"nan",
|
||||
"+inf",
|
||||
"-inf",
|
||||
"1.e+00",
|
||||
|
@ -141,7 +141,7 @@ exp_result_f64 = [
|
|||
fn test_float_to_str(){
|
||||
// test f32
|
||||
for c,x in test_cases_f32 {
|
||||
s := ftoa.f32_to_str(x,8)
|
||||
s := f32_to_str(x,8)
|
||||
s1 := exp_result_f32[c]
|
||||
//println("$s1 $s")
|
||||
assert s == s1
|
||||
|
@ -149,7 +149,7 @@ fn test_float_to_str(){
|
|||
|
||||
// test f64
|
||||
for c,x in test_cases_f64 {
|
||||
s := ftoa.f64_to_str(x,17)
|
||||
s := f64_to_str(x,17)
|
||||
s1 := exp_result_f64[c]
|
||||
//println("$s1 $s")
|
||||
assert s == s1
|
||||
|
@ -157,11 +157,11 @@ fn test_float_to_str(){
|
|||
|
||||
// test long format
|
||||
for exp := 1 ; exp < 120 ; exp++ {
|
||||
a :=ftoa.f64_to_str_l(("1e"+exp.str()).f64())
|
||||
a := f64_to_str_l(("1e"+exp.str()).f64())
|
||||
//println(a)
|
||||
assert a.len == exp + 1
|
||||
|
||||
b :=ftoa.f64_to_str_l(("1e-"+exp.str()).f64())
|
||||
b := f64_to_str_l(("1e-"+exp.str()).f64())
|
||||
//println(b)
|
||||
assert b.len == exp + 2
|
||||
}
|
||||
|
|
|
@ -58,7 +58,7 @@ fn bool_to_u64(b bool) u64 {
|
|||
|
||||
fn get_string_special(neg bool, expZero bool, mantZero bool) string {
|
||||
if !mantZero {
|
||||
return "NaN"
|
||||
return "nan"
|
||||
}
|
||||
if !expZero {
|
||||
if neg {
|
||||
|
@ -230,7 +230,7 @@ pub fn f32_to_str_l(f f64) string {
|
|||
|
||||
// f64_to_str_l return a string with the f64 converted in a strign in decimal notation
|
||||
pub fn f64_to_str_l(f f64) string {
|
||||
s := ftoa.f64_to_str(f,18)
|
||||
s := f64_to_str(f,18)
|
||||
|
||||
// check for +inf -inf Nan
|
||||
if s.len > 2 && (s[0] == `N` || s[1] == `i`) {
|
||||
|
@ -239,7 +239,7 @@ pub fn f64_to_str_l(f f64) string {
|
|||
|
||||
m_sgn_flag := false
|
||||
mut sgn := 1
|
||||
mut b := [32]byte
|
||||
mut b := [18+8]byte
|
||||
mut d_pos := 1
|
||||
mut i := 0
|
||||
mut i1 := 0
|
||||
|
|
Loading…
Reference in New Issue