atof implementation in V

pull/3142/head
penguindark 2019-12-16 23:07:13 +01:00 committed by Alexander Medvednikov
parent 5a56ca0892
commit 3dbf7a4039
4 changed files with 683 additions and 2 deletions

View File

@ -18,6 +18,24 @@ pub fn (d f32) str() string {
return tos(buf, vstrlen(buf))
}
// return a string of the input f64 in scientific notation with digit_num digits displayed
pub fn (x f64) strsci(digit_num int) string{
buf := malloc(digit_num*2+2)// TODO
conf_str := '%0.'+digit_num.str()+'e'
C.sprintf(charptr(buf), charptr(conf_str.str), x)
tmpstr := tos(buf, vstrlen(buf))
return tmpstr
}
// return a long string of the input f64, max
pub fn (x f64) strlong() string {
buf := malloc(18+32)// TODO
C.sprintf(charptr(buf),"%0.30lf",x)
tmpstr := tos(buf, vstrlen(buf))
return tmpstr
}
fn f32_abs(a f32) f32 { return if a < 0 { -a } else { a } }
fn f64_abs(a f64) f64 { return if a < 0 { -a } else { a } }

View File

@ -298,11 +298,13 @@ pub fn (s string) i64() i64 {
}
pub fn (s string) f32() f32 {
return C.atof(charptr(s.str))
//return C.atof(charptr(s.str))
return f32(strconv.atof64(s))
}
pub fn (s string) f64() f64 {
return C.atof(charptr(s.str))
//return C.atof(charptr(s.str))
return strconv.atof64(s)
}
pub fn (s string) u32() u32 {

603
vlib/strconv/atof.v 100644
View File

@ -0,0 +1,603 @@
/**********************************************************************
*
* atof util
*
* Copyright (c) 2019 Dario Deledda. All rights reserved.
* Use of this source code is governed by an MIT license
* that can be found in the LICENSE file.
*
* This file contains utilities for convert a string in a f64 variable
* IEEE 754 standard is used
*
* Know limitation:
* - limited to 18 significant digits
*
* The code is inspired by:
* Grzegorz Kraszewski krashan@teleinfo.pb.edu.pl
* URL: http://krashan.ppa.pl/articles/stringtofloat/
* Original license: MIT
*
**********************************************************************/
module strconv
/**********************************************************************
*
* 96 bit operation utilities
* Note: when u128 will be available these function can be refactored
*
**********************************************************************/
// right logical shift 96 bit
fn lsr96(s2 u32, s1 u32, s0 u32) (u32, u32, u32) {
mut r0 := u32(0)
mut r1 := u32(0)
mut r2 := u32(0)
r0 = (s0 >> 1) | ((s1 & u32(1)) << 31)
r1 = (s1 >> 1) | ((s2 & u32(1)) << 31)
r2 = s2 >> 1
return r2,r1,r0
}
// left logical shift 96 bit
fn lsl96(s2 u32, s1 u32, s0 u32) (u32, u32, u32) {
mut r0 := u32(0)
mut r1 := u32(0)
mut r2 := u32(0)
r2 = (s2 << 1) | ((s1 & (u32(1) << 31)) >> 31)
r1 = (s1 << 1) | ((s0 & (u32(1) << 31)) >> 31)
r0 = s0 << 1
return r2,r1,r0
}
// sum on 96 bit
fn add96(s2 u32, s1 u32, s0 u32, d2 u32, d1 u32, d0 u32) (u32, u32, u32) {
mut w := u64(0)
mut r0 := u32(0)
mut r1 := u32(0)
mut r2 := u32(0)
w = u64(s0) + u64(d0)
r0 = u32(w)
w >>= 32
w += u64(s1) + u64(d1)
r1 = u32(w)
w >>= 32
w += u64(s2) + u64(d2)
r2 = u32(w)
return r2,r1,r0
}
// subtraction on 96 bit
fn sub96(s2 u32, s1 u32, s0 u32, d2 u32, d1 u32, d0 u32) (u32, u32, u32) {
mut w := u64(0)
mut r0 := u32(0)
mut r1 := u32(0)
mut r2 := u32(0)
w = u64(s0) - u64(d0)
r0 = u32(w)
w >>= 32
w += u64(s1) - u64(d1)
r1 = u32(w)
w >>= 32
w += u64(s2) - u64(d2)
r2 = u32(w)
return r2,r1,r0
}
/**********************************************************************
*
* Constants
*
**********************************************************************/
const (
//
// f64 constants
//
DIGITS = 18
DOUBLE_PLUS_ZERO = u64(0x0000000000000000)
DOUBLE_MINUS_ZERO = 0x8000000000000000
DOUBLE_PLUS_INFINITY = 0x7FF0000000000000
DOUBLE_MINUS_INFINITY = 0xFFF0000000000000
//
// parser state machine states
//
FSM_A = 0
FSM_B = 1
FSM_C = 2
FSM_D = 3
FSM_E = 4
FSM_F = 5
FSM_G = 6
FSM_H = 7
FSM_I = 8
FSM_STOP = 9
//
// Possible parser return values.
//
PARSER_OK = 0 // parser finished OK
PARSER_PZERO = 1 // no digits or number is smaller than +-2^-1022
PARSER_MZERO = 2 // number is negative, module smaller
PARSER_PINF = 3 // number is higher than +HUGE_VAL
PARSER_MINF = 4 // number is lower than -HUGE_VAL
//
// char constants
// Note: Modify these if working with non-ASCII encoding
//
DPOINT =`.`
PLUS =`+`
MINUS =`-`
ZERO =`0`
NINE =`9`
TEN = u32(10)
)
/**********************************************************************
*
* Utility
*
**********************************************************************/
// NOTE: Modify these if working with non-ASCII encoding
fn is_digit(x byte) bool {
return (x >= ZERO && x <=NINE) == true
}
fn is_space(x byte) bool {
return ((x >= 0x89 && x <= 0x13) || x == 0x20) == true
}
fn is_exp(x byte) bool {
return (x == `E` || x == `e`) == true
}
/*
// return a string of the input f64 in scientific notation with digit_num digits displayed
pub fn strsci(x f64, digit_num int) string{
buf := malloc(digit_num*2+2)// TODO
conf_str := '%0.'+digit_num.str()+'e'
C.sprintf(charptr(buf), charptr(conf_str.str), x)
tmpstr := tos(buf, vstrlen(buf))
return tmpstr
}
// return a long string of the input f64, max
pub fn strlong(x f64) string {
buf := malloc(18+32)// TODO
C.sprintf(charptr(buf),"%0.30lf",x)
tmpstr := tos(buf, vstrlen(buf))
return tmpstr
}
*/
/**********************************************************************
*
* Support struct
*
**********************************************************************/
// The structure is filled by parser, then given to converter.
pub struct PrepNumber
{
pub mut:
negative bool = false // 0 if positive number, 1 if negative
exponent int = 0 // power of 10 exponent
mantissa u64 = u64(0) // integer mantissa
}
/**********************************************************************
*
* String parser
* NOTE: #TOFIX need one char after the last char of the number
*
**********************************************************************/
// parser return a support struct with all the parsing information for the converter
fn parser(s string ) (int,PrepNumber) {
mut state := FSM_A
mut digx := 0
mut c := ` ` // initial value for kicking off the state machine
mut result := PARSER_OK
mut expneg := false
mut expexp := 0
mut i := 0
mut pn := PrepNumber{}
for state != FSM_STOP {
match state {
// skip starting spaces
FSM_A {
if is_space(c)==true {
c = s[i++]
} else {
state = FSM_B
}
}
// check for the sign or point
FSM_B {
state = FSM_C
if c == PLUS {
c = s[i++]
} else if c == MINUS {
pn.negative = true
c = s[i++]
} else if is_digit(c) {}
else if c == DPOINT {}
else {
state = FSM_STOP
}
}
// skip the inital zeros
FSM_C {
if c == ZERO { c = s[i++] }
else if c == DPOINT {
c = s[i++]
state = FSM_D
} else {
state = FSM_E
}
}
// reading leading zeros in the fractional part of mantissa
FSM_D {
if c == ZERO {
c = s[i++]
if pn.exponent > -2147483647 { pn.exponent-- }
}
else {
state = FSM_F
}
}
// reading integer part of mantissa
FSM_E {
if is_digit(c) {
if digx < DIGITS {
pn.mantissa *= 10
pn.mantissa += u64( c - ZERO )
digx++
}
else if pn.exponent < 2147483647 { pn.exponent++ }
c = s[i++]
}
else if c == DPOINT {
c = s[i++]
state = FSM_F
}
else {
state = FSM_F
}
}
// reading fractional part of mantissa
FSM_F {
if is_digit(c) {
if digx < DIGITS {
pn.mantissa *= 10
pn.mantissa += u64(c - ZERO)
pn.exponent--
digx++
}
c = s[i++]
}
else if is_exp(c) {
c = s[i++]
state = FSM_G
}
else {
state = FSM_G
}
}
// reading sign of exponent
FSM_G {
if (c == PLUS) {
c = s[i++]
} else if c == MINUS {
expneg = true
c = s[i++]
}
state = FSM_H
}
// skipping leading zeros of exponent
FSM_H {
if c == ZERO {
c = s[i++]
}
else {
state = FSM_I
}
}
// reading exponent digits
FSM_I {
if is_digit(c) {
if expexp < 214748364 {
expexp *= 10
expexp += int(c - ZERO)
}
c = s[i++]
}
else {
state = FSM_STOP
}
}
else {}
}
//C.printf("len: %d i: %d str: %s \n",s.len,i,s[..i])
if i>=s.len {
state = FSM_STOP
}
}
if expneg {
expexp = -expexp
}
pn.exponent += expexp
if pn.mantissa == 0 {
if pn.negative {
result = PARSER_MZERO
} else {
result = PARSER_PZERO
}
}
else if (pn.exponent > 309){
if pn.negative {
result = PARSER_MINF
} else {
result = PARSER_PINF
}
}
else if pn.exponent < -328 {
if pn.negative {
result = PARSER_MZERO
} else {
result = PARSER_PZERO
}
}
return result,pn
}
/**********************************************************************
*
* Converter to the bit form of the f64 number
*
**********************************************************************/
// converter return a u64 with the bit image of the f64 number
fn converter(pn mut PrepNumber) u64 {
mut binexp := 92
mut s2:=u32(0) // 96-bit precision integer
mut s1:=u32(0)
mut s0:=u32(0)
mut q2:=u32(0) // 96-bit precision integer
mut q1:=u32(0)
mut q0:=u32(0)
mut r2:=u32(0) // 96-bit precision integer
mut r1:=u32(0)
mut r0:=u32(0)
mask28 := u32(0xF << 28)
mut result := u64(0)
// working on 3 u32 to have 96 bit precision
s0 = u32(pn.mantissa & u64(0x00000000FFFFFFFF))
s1 = u32(pn.mantissa >> 32)
s2 = u32(0)
// so we take the decimal exponent off
for pn.exponent > 0 {
q2, q1, q0 = lsl96(s2, s1, s0) // q = s * 2
r2, r1, r0 = lsl96(q2, q1, q0) // r = s * 4 <=> q * 2
s2, s1, s0 = lsl96(r2, r1, r0) // s = s * 8 <=> r * 2
s2, s1, s0 = add96(s2, s1, s0, q2, q1, q0) // s = (s * 8) + (s * 2) <=> s*10
pn.exponent--
for (s2 & mask28) != 0 {
q2, q1, q0 = lsr96(s2, s1, s0)
binexp++
s2 = q2
s1 = q1
s0 = q0
}
}
for pn.exponent < 0 {
for !((s2 & (u32(1) << 31)) !=0) {
q2, q1, q0 = lsl96(s2, s1, s0)
binexp--
s2 = q2
s1 = q1
s0 = q0
}
q2 = s2 / TEN
r1 = s2 % TEN
r2 = (s1 >> 8) | (r1 << 24)
q1 = r2 / TEN
r1 = r2 % TEN
r2 = ((s1 & u32(0xFF)) << 16) | (s0 >> 16) | (r1 << 24)
r0 = r2 / TEN
r1 = r2 % TEN
q1 = (q1 << 8) | ((r0 & u32(0x00FF0000)) >> 16)
q0 = r0 << 16
r2 = (s0 & u32(0xFFFF)) | (r1 << 16)
q0 |= r2 / TEN
s2 = q2
s1 = q1
s0 = q0
pn.exponent++
}
//C.printf("mantissa before normalization: %08x%08x%08x binexp: %d \n", s2,s1,s0,binexp)
// normalization, the 28 bit in s2 must the leftest one in the variable
if (s2 != 0 || s1 != 0|| s0 != 0) {
for ((s2 & mask28) == 0) {
q2, q1, q0 = lsl96(s2, s1, s0)
binexp--
s2 = q2
s1 = q1
s0 = q0
}
}
// rounding if needed
/*
* "round half to even" algorithm
* Example for f32, just a reminder
*
* If bit 54 is 0, round down
* If bit 54 is 1
* If any bit beyond bit 54 is 1, round up
* If all bits beyond bit 54 are 0 (meaning the number is halfway between two floating-point numbers)
* If bit 53 is 0, round down
* If bit 53 is 1, round up
*/
/* test case 1 complete
s2=0x1FFFFFFF
s1=0xFFFFFF80
s0=0x0
*/
/* test case 1 check_round_bit
s2=0x18888888
s1=0x88888880
s0=0x0
*/
/* test case check_round_bit + normalization
s2=0x18888888
s1=0x88888F80
s0=0x0
*/
//C.printf("mantissa before rounding: %08x%08x%08x binexp: %d \n", s2,s1,s0,binexp)
// s1 => 0xFFFFFFxx only F are rapresented
nbit := 7
check_round_bit := u32(1) << u32(nbit)
check_round_mask := u32(0xFFFFFFFF) << u32(nbit)
if (s1 & check_round_bit) != 0 {
//C.printf("need round!! cehck mask: %08x\n", s1 & ~check_round_mask )
if (s1 & ~check_round_mask) != 0 {
//C.printf("Add 1!\n")
s2,s1,s0 = add96(s2,s1,s0, 0,check_round_bit,0)
} else {
//C.printf("All 0!\n")
if (s1 & (check_round_bit<<u32(1) )) != 0 {
//C.printf("Add 1 form -1 bit control!\n")
s2,s1,s0 = add96(s2,s1,s0, 0,check_round_bit,0)
}
}
s1 = s1 & check_round_mask
s0 = u32(0)
}
// recheck normalization
if (s2 & (mask28<<u32(1)) != 0 ) {
//C.printf("Renormalize!!")
q2, q1, q0 = lsr96(s2, s1, s0)
binexp--
s2 = q2
s1 = q1
s0 = q0
}
//tmp := ( u64(s2 & ~mask28) << 24) | ((u64(s1) + u64(128)) >> 8)
//C.printf("mantissa after rounding : %08x%08x%08x binexp: %d \n", s2,s1,s0,binexp)
//C.printf("Tmp result: %016x\n",tmp)
// end rounding
// offset the binary exponent IEEE 754
binexp += 1023
if (binexp > 2046) {
if pn.negative {
result = DOUBLE_MINUS_INFINITY
} else {
result = DOUBLE_PLUS_INFINITY
}
}
else if binexp < 1 {
if pn.negative {
result = DOUBLE_MINUS_ZERO
}
}
else if s2 != 0 {
mut q := u64(0)
binexs2 := u64(binexp) << 52
q = ( u64(s2 & ~mask28) << 24) | ((u64(s1) + u64(128)) >> 8) | binexs2
if pn.negative {
q |= (u64(1) << 63)
}
result = q
}
return result
}
/**********************************************************************
*
* Public functions
*
**********************************************************************/
// atof64 return a f64 from a string doing a parsing operation
pub fn atof64(s string) f64 {
mut pn := PrepNumber{}
mut res_parsing := 0
mut result := f64(0)
result=f64(0.0)
mut res_ptr := *u64(&result)
res_parsing, pn = parser(s+' ') // TODO: need an extra char for now
//println(pn)
match res_parsing {
PARSER_OK {
*res_ptr = converter( mut pn)
}
PARSER_PZERO {
*res_ptr = DOUBLE_PLUS_ZERO
}
PARSER_MZERO {
*res_ptr = DOUBLE_MINUS_ZERO
}
PARSER_PINF {
*res_ptr = DOUBLE_PLUS_INFINITY
}
PARSER_MINF {
*res_ptr = DOUBLE_MINUS_INFINITY
}
else {}
}
return result
}

View File

@ -0,0 +1,58 @@
/**********************************************************************
*
* String to float Test
*
**********************************************************************/
import strconv
fn test_atof() {
//
// test set
//
// float64
src_num := [
f64(0.3),
-0.3 ,
0.004,
-0.004,
0.0 ,
-0.0
]
// strings
src_num_str := [
'0.3',
'-0.3',
'0.004',
'-0.004',
'0.0',
'-0.0'
]
// check conversion1 string <=> string
for c,x in src_num {
assert strconv.atof64(src_num_str[c]).strlong() == x.strlong()
assert x.strsci(18) == f64(C.atof(src_num_str[c].str)).strsci(18)
}
// check conversion2 string <==> f64
for c,x in src_num_str {
a:=strconv.atof64(x)
b:=src_num[c]
assert a.strlong() == b.strlong()
}
// special cases
mut f1 := f64(0.0)
mut ptr := *u64(&f1)
ptr = *u64(&f1)
// DOUBLE_PLUS_ZERO
f1=0.0
assert *ptr == u64(0x0000000000000000)
// DOUBLE_MINUS_ZERO
f1=-0.0
assert *ptr == u64(0x8000000000000000)
}