math: additional complex operations with tests
parent
7b1be8a2bd
commit
3f916efb64
|
@ -92,6 +92,69 @@ pub fn (c1 Complex) conjugate() Complex{
|
||||||
return Complex{c1.re,-c1.im}
|
return Complex{c1.re,-c1.im}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Complex Additive Inverse
|
||||||
|
// Based on
|
||||||
|
// http://tutorial.math.lamar.edu/Extras/ComplexPrimer/Arithmetic.aspx
|
||||||
|
pub fn (c1 Complex) addinv() Complex {
|
||||||
|
return Complex{-c1.re,-c1.im}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Complex Multiplicative Inverse
|
||||||
|
// Based on
|
||||||
|
// http://tutorial.math.lamar.edu/Extras/ComplexPrimer/Arithmetic.aspx
|
||||||
|
pub fn (c1 Complex) mulinv() Complex {
|
||||||
|
return Complex {
|
||||||
|
c1.re / (pow(c1.re,2) + pow(c1.im,2)),
|
||||||
|
-c1.im / (pow(c1.re,2) + pow(c1.im,2))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Complex Mod or Absolute
|
||||||
|
// Based on
|
||||||
|
// http://tutorial.math.lamar.edu/Extras/ComplexPrimer/ConjugateModulus.aspx
|
||||||
|
pub fn (c1 Complex) mod() f64 {
|
||||||
|
return sqrt(pow(c1.re,2)+pow(c1.im,2))
|
||||||
|
}
|
||||||
|
|
||||||
|
// Complex Power
|
||||||
|
// Based on
|
||||||
|
// https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers/multiplying-and-dividing-complex-numbers-in-polar-form/a/complex-number-polar-form-review
|
||||||
|
pub fn (c1 Complex) pow(n f64) Complex {
|
||||||
|
r := pow(c1.mod(),n)
|
||||||
|
angle := atan2(c1.im,c1.re)
|
||||||
|
return Complex {
|
||||||
|
r * cos(n*angle),
|
||||||
|
r * sin(n*angle)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Complex nth root
|
||||||
|
pub fn (c1 Complex) root(n f64) Complex {
|
||||||
|
return c1.pow(1.0/n)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Complex Exponential
|
||||||
|
// Using Euler's Identity
|
||||||
|
// Based on
|
||||||
|
// https://www.math.wisc.edu/~angenent/Free-Lecture-Notes/freecomplexnumbers.pdf
|
||||||
|
pub fn (c1 Complex) exp() Complex {
|
||||||
|
a := exp(c1.re)
|
||||||
|
return Complex {
|
||||||
|
a * cos(c1.im),
|
||||||
|
a * sin(c1.im)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Complex Natural Logarithm
|
||||||
|
// Based on
|
||||||
|
// http://www.chemistrylearning.com/logarithm-of-complex-number/
|
||||||
|
pub fn (c1 Complex) ln() Complex {
|
||||||
|
return Complex {
|
||||||
|
log(c1.mod()),
|
||||||
|
atan2(c1.im,c1.re)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// Complex Equals
|
// Complex Equals
|
||||||
pub fn (c1 Complex) equals(c2 Complex) bool {
|
pub fn (c1 Complex) equals(c2 Complex) bool {
|
||||||
return (c1.re == c2.re) && (c1.im == c2.im)
|
return (c1.re == c2.re) && (c1.im == c2.im)
|
||||||
|
|
|
@ -117,3 +117,128 @@ fn test_complex_angle(){
|
||||||
mut cc := c.conjugate()
|
mut cc := c.conjugate()
|
||||||
assert cc.angle() + c.angle() == 0
|
assert cc.angle() + c.angle() == 0
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
fn test_complex_addinv() {
|
||||||
|
// Tests were also verified on Wolfram Alpha
|
||||||
|
mut c1 := math.complex(5,7)
|
||||||
|
mut c2 := math.complex(-5,-7)
|
||||||
|
mut result := c1.addinv()
|
||||||
|
assert result.equals(c2)
|
||||||
|
c1 = math.complex(-3,4)
|
||||||
|
c2 = math.complex(3,-4)
|
||||||
|
result = c1.addinv()
|
||||||
|
assert result.equals(c2)
|
||||||
|
c1 = math.complex(-1,-2)
|
||||||
|
c2 = math.complex(1,2)
|
||||||
|
result = c1.addinv()
|
||||||
|
assert result.equals(c2)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn test_complex_mulinv() {
|
||||||
|
// Tests were also verified on Wolfram Alpha
|
||||||
|
mut c1 := math.complex(5,7)
|
||||||
|
mut c2 := math.complex(0.067568,-0.094595)
|
||||||
|
mut result := c1.mulinv()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = math.complex(-3,4)
|
||||||
|
c2 = math.complex(-0.12,-0.16)
|
||||||
|
result = c1.mulinv()
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = math.complex(-1,-2)
|
||||||
|
c2 = math.complex(-0.2,0.4)
|
||||||
|
result = c1.mulinv()
|
||||||
|
assert result.equals(c2)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn test_complex_mod() {
|
||||||
|
// Tests were also verified on Wolfram Alpha
|
||||||
|
mut c1 := math.complex(5,7)
|
||||||
|
mut result := c1.mod()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq('8.602325')
|
||||||
|
c1 = math.complex(-3,4)
|
||||||
|
result = c1.mod()
|
||||||
|
assert result == 5
|
||||||
|
c1 = math.complex(-1,-2)
|
||||||
|
result = c1.mod()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq('2.236068')
|
||||||
|
}
|
||||||
|
|
||||||
|
fn test_complex_pow() {
|
||||||
|
// Tests were also verified on Wolfram Alpha
|
||||||
|
mut c1 := math.complex(5,7)
|
||||||
|
mut c2 := math.complex(-24.0,70.0)
|
||||||
|
mut result := c1.pow(2)
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = math.complex(-3,4)
|
||||||
|
c2 = math.complex(117,44)
|
||||||
|
result = c1.pow(3)
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = math.complex(-1,-2)
|
||||||
|
c2 = math.complex(-7,-24)
|
||||||
|
result = c1.pow(4)
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
}
|
||||||
|
|
||||||
|
fn test_complex_root() {
|
||||||
|
// Tests were also verified on Wolfram Alpha
|
||||||
|
mut c1 := math.complex(5,7)
|
||||||
|
mut c2 := math.complex(2.607904,1.342074)
|
||||||
|
mut result := c1.root(2)
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = math.complex(-3,4)
|
||||||
|
c2 = math.complex(1.264953,1.150614)
|
||||||
|
result = c1.root(3)
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = math.complex(-1,-2)
|
||||||
|
c2 = math.complex(1.068059,-0.595482)
|
||||||
|
result = c1.root(4)
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
}
|
||||||
|
|
||||||
|
fn test_complex_exp() {
|
||||||
|
// Tests were also verified on Wolfram Alpha
|
||||||
|
mut c1 := math.complex(5,7)
|
||||||
|
mut c2 := math.complex(111.889015,97.505457)
|
||||||
|
mut result := c1.exp()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = math.complex(-3,4)
|
||||||
|
c2 = math.complex(-0.032543,-0.037679)
|
||||||
|
result = c1.exp()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = math.complex(-1,-2)
|
||||||
|
c2 = math.complex(-0.153092,-0.334512)
|
||||||
|
result = c1.exp()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
}
|
||||||
|
|
||||||
|
fn test_complex_ln() {
|
||||||
|
// Tests were also verified on Wolfram Alpha
|
||||||
|
mut c1 := math.complex(5,7)
|
||||||
|
mut c2 := math.complex(2.152033,0.950547)
|
||||||
|
mut result := c1.ln()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = math.complex(-3,4)
|
||||||
|
c2 = math.complex(1.609438,2.214297)
|
||||||
|
result = c1.ln()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = math.complex(-1,-2)
|
||||||
|
c2 = math.complex(0.804719,-2.034444)
|
||||||
|
result = c1.ln()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
}
|
||||||
|
|
Loading…
Reference in New Issue