sync: move pool related code to `sync.pool`, cleanup, add a README.md

pull/8673/head
Delyan Angelov 2021-02-11 10:55:23 +02:00
parent 93c1c1cec3
commit 578de634fe
No known key found for this signature in database
GPG Key ID: 66886C0F12D595ED
8 changed files with 292 additions and 347 deletions

View File

@ -4,7 +4,7 @@ import os
import time
import term
import benchmark
import sync
import sync.pool
import v.pref
import v.util.vtest
@ -198,7 +198,7 @@ pub fn (mut ts TestSession) test() {
remaining_files = vtest.filter_vtest_only(remaining_files, fix_slashes: false)
ts.files = remaining_files
ts.benchmark.set_total_expected_steps(remaining_files.len)
mut pool_of_test_runners := sync.new_pool_processor(callback: worker_trunner)
mut pool_of_test_runners := pool.new_pool_processor(callback: worker_trunner)
// for handling messages across threads
ts.nmessages = chan LogMessage{cap: 10000}
ts.nprint_ended = chan int{cap: 0}
@ -218,7 +218,7 @@ pub fn (mut ts TestSession) test() {
}
}
fn worker_trunner(mut p sync.PoolProcessor, idx int, thread_id int) voidptr {
fn worker_trunner(mut p pool.PoolProcessor, idx int, thread_id int) voidptr {
mut ts := &TestSession(p.get_shared_context())
tmpd := ts.vtmp_dir
show_stats := '-stats' in ts.vargs.split(' ')
@ -230,7 +230,7 @@ fn worker_trunner(mut p sync.PoolProcessor, idx int, thread_id int) voidptr {
p.set_thread_context(idx, tls_bench)
}
tls_bench.no_cstep = true
dot_relative_file := p.get_string_item(idx)
dot_relative_file := p.get_item<string>(idx)
mut relative_file := dot_relative_file.replace('./', '')
if ts.root_relative {
relative_file = relative_file.replace(ts.vroot + os.path_separator, '')
@ -239,8 +239,11 @@ fn worker_trunner(mut p sync.PoolProcessor, idx int, thread_id int) voidptr {
// Ensure that the generated binaries will be stored in the temporary folder.
// Remove them after a test passes/fails.
fname := os.file_name(file)
generated_binary_fname := if os.user_os() == 'windows' { fname.replace('.v', '.exe') } else { fname.replace('.v',
'') }
generated_binary_fname := if os.user_os() == 'windows' {
fname.replace('.v', '.exe')
} else {
fname.replace('.v', '')
}
generated_binary_fpath := os.join_path(tmpd, generated_binary_fname)
if os.exists(generated_binary_fpath) {
if ts.rm_binaries {
@ -258,7 +261,7 @@ fn worker_trunner(mut p sync.PoolProcessor, idx int, thread_id int) voidptr {
ts.benchmark.skip()
tls_bench.skip()
ts.append_message(.skip, tls_bench.step_message_skip(relative_file))
return sync.no_result
return pool.no_result
}
if show_stats {
ts.append_message(.ok, term.h_divider('-'))
@ -270,7 +273,7 @@ fn worker_trunner(mut p sync.PoolProcessor, idx int, thread_id int) voidptr {
ts.failed = true
ts.benchmark.fail()
tls_bench.fail()
return sync.no_result
return pool.no_result
}
} else {
if testing.show_start {
@ -281,7 +284,7 @@ fn worker_trunner(mut p sync.PoolProcessor, idx int, thread_id int) voidptr {
ts.benchmark.fail()
tls_bench.fail()
ts.append_message(.fail, tls_bench.step_message_fail(relative_file))
return sync.no_result
return pool.no_result
}
if r.exit_code != 0 {
ts.failed = true
@ -300,7 +303,7 @@ fn worker_trunner(mut p sync.PoolProcessor, idx int, thread_id int) voidptr {
os.rm(generated_binary_fpath) or { panic(err) }
}
}
return sync.no_result
return pool.no_result
}
pub fn vlib_should_be_present(parent_dir string) {
@ -343,8 +346,7 @@ pub fn prepare_test_session(zargs string, folder string, oskipped []string, main
}
$if windows {
// skip pico and process/command examples on windows
if f.ends_with('examples\\pico\\pico.v')
|| f.ends_with('examples\\process\\command.v') {
if f.ends_with('examples\\pico\\pico.v') || f.ends_with('examples\\process\\command.v') {
continue
}
}

View File

@ -3,25 +3,25 @@
// that can be found in the LICENSE file.
import net.http
import json
import sync
import sync.pool
struct Story {
title string
url string
}
fn worker_fetch(p &sync.PoolProcessor, cursor int, worker_id int) voidptr {
id := p.get_int_item(cursor)
fn worker_fetch(p &pool.PoolProcessor, cursor int, worker_id int) voidptr {
id := p.get_item<int>(cursor)
resp := http.get('https://hacker-news.firebaseio.com/v0/item/${id}.json') or {
println('failed to fetch data from /v0/item/${id}.json')
return sync.no_result
return pool.no_result
}
story := json.decode(Story,resp.text) or {
story := json.decode(Story, resp.text) or {
println('failed to decode a story')
return sync.no_result
return pool.no_result
}
println('# $cursor) $story.title | $story.url')
return sync.no_result
return pool.no_result
}
// Fetches top HN stories in parallel, depending on how many cores you have
@ -30,20 +30,20 @@ fn main() {
println('failed to fetch data from /v0/topstories.json')
return
}
mut ids := json.decode([]int,resp.text) or {
mut ids := json.decode([]int, resp.text) or {
println('failed to decode topstories.json')
return
}
if ids.len > 10 {
ids = ids[0..10]
}
mut fetcher_pool := sync.new_pool_processor({
mut fetcher_pool := pool.new_pool_processor(
callback: worker_fetch
})
)
// NB: if you do not call set_max_jobs, the pool will try to use an optimal
// number of threads, one per each core in your system, which in most
// cases is what you want anyway... You can override the automatic choice
// by setting the VJOBS environment variable too.
// fetcher_pool.set_max_jobs( 4 )
fetcher_pool.work_on_items_i(ids)
fetcher_pool.work_on_items(ids)
}

View File

@ -1,254 +0,0 @@
module sync
import runtime
// * Goal: this file provides a convenient way to run identical tasks over a list
// * of items in parallel, without worrying about waitgroups, mutexes and so on.
// *
// * Usage example:
// * struct SResult{ s string }
// * fn sprocess(p &sync.PoolProcessor, idx, wid int) voidptr {
// * item := p.get_item<string>(idx)
// * println('idx: $idx, wid: $wid, item: ' + item)
// * return &SResult{ item.reverse() }
// * }
// * pool := sync.new_pool_processor({ callback: sprocess })
// * pool.work_on_items(['a','b','c','d','e','f','g'])
// * // optionally, you can iterate over the results too:
// * for x in pool.get_results<SResult>() {
// * println('result: $x.s')
// * }
// *
// * See https://github.com/vlang/v/blob/master/vlib/sync/pool_test.v for a
// * more detailed usage example.
// *
// * After all the work is done in parallel by the worker threads in the pool,
// * pool.work_on_items will return, and you can then call
// * pool.get_results<Result>() to retrieve a list of all the results,
// * that the worker callbacks returned for each item that you passed.
// * The parameters of new_pool_processor are:
// * context.maxjobs: when 0 (the default), the PoolProcessor will use an
// * optimal for your system number of threads to process your items
// * context.callback: this should be a callback function, that each worker
// * thread in the pool will run for each item.
// * The callback function will receive as parameters:
// * 1) the PoolProcessor instance, so it can call
// * p.get_item<int>(idx) to get the actual item at index idx
// * NB: for now, you are better off calling p.get_string_item(idx)
// * or p.get_int_item(idx) ; TODO: vfmt and generics
// * 2) idx - the index of the currently processed item
// * 3) task_id - the index of the worker thread in which the callback
// * function is running.
pub const (
no_result = voidptr(0)
)
pub struct PoolProcessor {
thread_cb voidptr
mut:
njobs int
items []voidptr
results []voidptr
ntask int // writing to this should be locked by ntask_mtx.
ntask_mtx &Mutex
waitgroup &WaitGroup
shared_context voidptr
thread_contexts []voidptr
}
pub type ThreadCB = fn (p &PoolProcessor, idx int, task_id int) voidptr
pub struct PoolProcessorConfig {
maxjobs int
callback ThreadCB
}
// new_pool_processor returns a new PoolProcessor instance.
pub fn new_pool_processor(context PoolProcessorConfig) &PoolProcessor {
if isnil(context.callback) {
panic('You need to pass a valid callback to new_pool_processor.')
}
// TODO: remove this call.
// It prevents a V warning about unused module runtime.
runtime.nr_jobs()
pool := &PoolProcessor {
items: []
results: []
shared_context: voidptr(0)
thread_contexts: []
njobs: context.maxjobs
ntask: 0
ntask_mtx: new_mutex()
waitgroup: new_waitgroup()
thread_cb: voidptr(context.callback)
}
return pool
}
// set_max_jobs gives you the ability to override the number
// of jobs *after* the PoolProcessor had been created already.
pub fn (mut pool PoolProcessor) set_max_jobs(njobs int) {
pool.njobs = njobs
}
// work_on_items receives a list of items of type T,
// then starts a work pool of pool.njobs threads, each running
// pool.thread_cb in a loop, untill all items in the list,
// are processed.
// When pool.njobs is 0, the number of jobs is determined
// by the number of available cores on the system.
// work_on_items returns *after* all threads finish.
// You can optionally call get_results after that.
// TODO: uncomment, when generics work again
//pub fn (mut pool PoolProcessor) work_on_items<T>(items []T) {
// pool.work_on_pointers( items.pointers() )
//}
pub fn (mut pool PoolProcessor) work_on_pointers(items []voidptr) {
mut njobs := runtime.nr_jobs()
if pool.njobs > 0 {
njobs = pool.njobs
}
pool.items = []
pool.results = []
pool.thread_contexts = []
pool.items << items
pool.results = []voidptr{len:(pool.items.len)}
pool.thread_contexts << []voidptr{len:(pool.items.len)}
pool.waitgroup.add(njobs)
for i := 0; i < njobs; i++ {
if njobs > 1 {
go process_in_thread(mut pool,i)
} else {
// do not run concurrently, just use the same thread:
process_in_thread(mut pool,i)
}
}
pool.waitgroup.wait()
}
// process_in_thread does the actual work of worker thread.
// It is a workaround for the current inability to pass a
// method in a callback.
fn process_in_thread(mut pool PoolProcessor, task_id int) {
cb := ThreadCB(pool.thread_cb)
mut idx := 0
ilen := pool.items.len
for {
if pool.ntask >= ilen {
break
}
pool.ntask_mtx.@lock()
idx = pool.ntask
pool.ntask++
pool.ntask_mtx.unlock()
if idx >= ilen {
break
}
pool.results[idx] = cb(pool, idx, task_id)
}
pool.waitgroup.done()
}
// get_item - called by the worker callback.
// Retrieves a type safe instance of the currently processed item
// TODO: uncomment, when generics work again
//pub fn (pool &PoolProcessor) get_item<T>(idx int) T {
// return *(&T(pool.items[idx]))
//}
// get_string_item - called by the worker callback.
// It does not use generics so it does not mess up vfmt.
// TODO: remove the need for this when vfmt becomes smarter.
pub fn (pool &PoolProcessor) get_string_item(idx int) string {
// return *(&string(pool.items[idx]))
// TODO: the below is a hack, remove it when v2 casting works again
return *unsafe {&string( pool.items[idx] )}
}
// get_int_item - called by the worker callback.
// It does not use generics so it does not mess up vfmt.
// TODO: remove the need for this when vfmt becomes smarter.
pub fn (pool &PoolProcessor) get_int_item(idx int) int {
item := pool.items[idx]
return *unsafe {&int(item)}
}
// TODO: uncomment, when generics work again
//pub fn (pool &PoolProcessor) get_result<T>(idx int) T {
// return *(&T(pool.results[idx]))
//}
// TODO: uncomment, when generics work again
// get_results - can be called to get a list of type safe results.
//pub fn (pool &PoolProcessor) get_results<T>() []T {
// mut res := []T{}
// for i in 0 .. pool.results.len {
// res << *(&T(pool.results[i]))
// }
// return res
//}
// set_shared_context - can be called during the setup so that you can
// provide a context that is shared between all worker threads, like
// common options/settings.
pub fn (mut pool PoolProcessor) set_shared_context(context voidptr) {
pool.shared_context = context
}
// get_shared_context - can be called in each worker callback, to get
// the context set by pool.set_shared_context
pub fn (pool &PoolProcessor) get_shared_context() voidptr {
return pool.shared_context
}
// set_thread_context - can be called during the setup at the start of
// each worker callback, so that the worker callback can have some thread
// local storage area where it can write/read information that is private
// to the given thread, without worrying that it will get overwritten by
// another thread
pub fn (mut pool PoolProcessor) set_thread_context(idx int, context voidptr) {
pool.thread_contexts[idx] = context
}
// get_thread_context - returns a pointer, that was set with
// pool.set_thread_context . This pointer is private to each thread.
pub fn (pool &PoolProcessor) get_thread_context(idx int) voidptr {
return pool.thread_contexts[idx]
}
// TODO: remove everything below this line after generics are fixed:
pub struct SResult {
pub:
s string
}
pub struct IResult {
pub:
i int
}
//
pub fn (mut pool PoolProcessor) work_on_items_s(items []string) {
pool.work_on_pointers( items.pointers() )
}
pub fn (mut pool PoolProcessor) work_on_items_i(items []int) {
pool.work_on_pointers( items.pointers() )
}
pub fn (pool &PoolProcessor) get_results_s() []SResult {
mut res := []SResult{}
for i in 0 .. pool.results.len {
res << *unsafe {&SResult(pool.results[i])}
}
return res
}
pub fn (pool &PoolProcessor) get_results_i() []IResult {
mut res := []IResult{}
for i in 0 .. pool.results.len {
res << *unsafe {&IResult(pool.results[i])}
}
return res
}

View File

@ -0,0 +1,36 @@
The `sync.pool` module provides a convenient way to run identical tasks over
an array of items *in parallel*, without worrying about thread synchronization,
waitgroups, mutexes etc.., you just need to supply a callback function, that
will be called once per each item in your input array.
After all the work is done in parallel by the worker threads in the pool,
pool.work_on_items will return. You can then call pool.get_results<Result>()
to retrieve a list of all the results, that the worker callbacks returned
for each input item. Example:
```v
import sync.pool
struct SResult {
s string
}
fn sprocess(pp &pool.PoolProcessor, idx int, wid int) &SResult {
item := pp.get_item<string>(idx)
println('idx: $idx, wid: $wid, item: ' + item)
return &SResult{item.reverse()}
}
fn main() {
mut pp := pool.new_pool_processor(callback: sprocess)
pp.work_on_items(['1abc', '2abc', '3abc', '4abc', '5abc', '6abc', '7abc'])
// optionally, you can iterate over the results too:
for x in pp.get_results<SResult>() {
println('result: $x.s')
}
}
```
See https://github.com/vlang/v/blob/master/vlib/sync/pool/pool_test.v for a
more detailed usage example.

View File

@ -0,0 +1,172 @@
module pool
import sync
import runtime
pub const (
no_result = voidptr(0)
)
pub struct PoolProcessor {
thread_cb voidptr
mut:
njobs int
items []voidptr
results []voidptr
ntask int // writing to this should be locked by ntask_mtx.
ntask_mtx &sync.Mutex
waitgroup &sync.WaitGroup
shared_context voidptr
thread_contexts []voidptr
}
pub type ThreadCB = fn (p &PoolProcessor, idx int, task_id int) voidptr
pub struct PoolProcessorConfig {
maxjobs int
callback ThreadCB
}
// new_pool_processor returns a new PoolProcessor instance.
// The parameters of new_pool_processor are:
// context.maxjobs: when 0 (the default), the PoolProcessor will use a
// number of threads, that is optimal for your system to process your items.
// context.callback: this should be a callback function, that each worker
// thread in the pool will run for each item.
// The callback function will receive as parameters:
// 1) the PoolProcessor instance, so it can call
// p.get_item<int>(idx) to get the actual item at index idx
// 2) idx - the index of the currently processed item
// 3) task_id - the index of the worker thread in which the callback
// function is running.
pub fn new_pool_processor(context PoolProcessorConfig) &PoolProcessor {
if isnil(context.callback) {
panic('You need to pass a valid callback to new_pool_processor.')
}
pool := &PoolProcessor {
items: []
results: []
shared_context: voidptr(0)
thread_contexts: []
njobs: context.maxjobs
ntask: 0
ntask_mtx: sync.new_mutex()
waitgroup: sync.new_waitgroup()
thread_cb: voidptr(context.callback)
}
return pool
}
// set_max_jobs gives you the ability to override the number
// of jobs *after* the PoolProcessor had been created already.
pub fn (mut pool PoolProcessor) set_max_jobs(njobs int) {
pool.njobs = njobs
}
// work_on_items receives a list of items of type T,
// then starts a work pool of pool.njobs threads, each running
// pool.thread_cb in a loop, untill all items in the list,
// are processed.
// When pool.njobs is 0, the number of jobs is determined
// by the number of available cores on the system.
// work_on_items returns *after* all threads finish.
// You can optionally call get_results after that.
pub fn (mut pool PoolProcessor) work_on_items<T>(items []T) {
pool.work_on_pointers( items.pointers() )
}
pub fn (mut pool PoolProcessor) work_on_pointers(items []voidptr) {
mut njobs := runtime.nr_jobs()
if pool.njobs > 0 {
njobs = pool.njobs
}
pool.items = []
pool.results = []
pool.thread_contexts = []
pool.items << items
pool.results = []voidptr{len:(pool.items.len)}
pool.thread_contexts << []voidptr{len:(pool.items.len)}
pool.waitgroup.add(njobs)
for i := 0; i < njobs; i++ {
if njobs > 1 {
go process_in_thread(mut pool,i)
} else {
// do not run concurrently, just use the same thread:
process_in_thread(mut pool,i)
}
}
pool.waitgroup.wait()
}
// process_in_thread does the actual work of worker thread.
// It is a workaround for the current inability to pass a
// method in a callback.
fn process_in_thread(mut pool PoolProcessor, task_id int) {
cb := ThreadCB(pool.thread_cb)
mut idx := 0
ilen := pool.items.len
for {
if pool.ntask >= ilen {
break
}
pool.ntask_mtx.@lock()
idx = pool.ntask
pool.ntask++
pool.ntask_mtx.unlock()
if idx >= ilen {
break
}
pool.results[idx] = cb(pool, idx, task_id)
}
pool.waitgroup.done()
}
// get_item - called by the worker callback.
// Retrieves a type safe instance of the currently processed item
pub fn (pool &PoolProcessor) get_item<T>(idx int) T {
return *(&T(pool.items[idx]))
}
// get_result - called by the main thread to get a specific result.
// Retrieves a type safe instance of the produced result.
pub fn (pool &PoolProcessor) get_result<T>(idx int) T {
return *(&T(pool.results[idx]))
}
// get_results - get a list of type safe results in the main thread.
pub fn (pool &PoolProcessor) get_results<T>() []T {
mut res := []T{}
for i in 0 .. pool.results.len {
res << *(&T(pool.results[i]))
}
return res
}
// set_shared_context - can be called during the setup so that you can
// provide a context that is shared between all worker threads, like
// common options/settings.
pub fn (mut pool PoolProcessor) set_shared_context(context voidptr) {
pool.shared_context = context
}
// get_shared_context - can be called in each worker callback, to get
// the context set by pool.set_shared_context
pub fn (pool &PoolProcessor) get_shared_context() voidptr {
return pool.shared_context
}
// set_thread_context - can be called during the setup at the start of
// each worker callback, so that the worker callback can have some thread
// local storage area where it can write/read information that is private
// to the given thread, without worrying that it will get overwritten by
// another thread
pub fn (mut pool PoolProcessor) set_thread_context(idx int, context voidptr) {
pool.thread_contexts[idx] = context
}
// get_thread_context - returns a pointer, that was set with
// pool.set_thread_context . This pointer is private to each thread.
pub fn (pool &PoolProcessor) get_thread_context(idx int) voidptr {
return pool.thread_contexts[idx]
}

View File

@ -0,0 +1,52 @@
import time
import sync.pool
pub struct SResult {
s string
}
pub struct IResult {
i int
}
fn worker_s(p &pool.PoolProcessor, idx int, worker_id int) &SResult {
item := p.get_item<string>(idx)
println('worker_s worker_id: $worker_id | idx: $idx | item: $item')
time.sleep_ms(3)
return &SResult{'$item $item'}
}
fn worker_i(p &pool.PoolProcessor, idx int, worker_id int) &IResult {
item := p.get_item<int>(idx)
println('worker_i worker_id: $worker_id | idx: $idx | item: $item')
time.sleep_ms(5)
return &IResult{item * 1000}
}
fn test_work_on_strings() {
mut pool_s := pool.new_pool_processor(
callback: worker_s
maxjobs: 8
)
pool_s.work_on_items(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'])
for x in pool_s.get_results<SResult>() {
println(x.s)
assert x.s.len > 1
}
}
fn test_work_on_ints() {
// NB: since maxjobs is left empty here,
// the pool processor will use njobs = runtime.nr_jobs so that
// it will work optimally without overloading the system
mut pool_i := pool.new_pool_processor(
callback: worker_i
)
pool_i.work_on_items([1, 2, 3, 4, 5, 6, 7, 8])
for x in pool_i.get_results<IResult>() {
println(x.i)
assert x.i > 100
}
}

View File

@ -1,63 +0,0 @@
import sync
import time
fn worker_s(p &sync.PoolProcessor, idx int, worker_id int) voidptr {
// TODO: this works, but confuses vfmt. It should be used instead of
// p.get_int_item when vfmt becomes smarter.
// item := p.get_item<string>(idx)
item := p.get_string_item(idx)
println('worker_s worker_id: $worker_id | idx: $idx | item: ${item}')
time.sleep_ms(3)
return voidptr( &sync.SResult{ '${item} ${item}' } )
}
fn worker_i(p &sync.PoolProcessor, idx int, worker_id int) voidptr {
// TODO: this works, but confuses vfmt. See the comment above.
// item := p.get_item<int>(idx)
item := p.get_int_item(idx)
println('worker_i worker_id: $worker_id | idx: $idx | item: ${item}')
time.sleep_ms(5)
return voidptr( &sync.IResult{ item * 1000 } )
}
fn test_work_on_strings() {
mut pool_s := sync.new_pool_processor({
callback: worker_s
maxjobs: 8
})
// TODO: uncomment this when generics work again
//pool_s.work_on_items(['a','b','c','d','e','f','g','h','i','j'])
//for x in pool_s.get_results<SResult>() {
// println( x.s )
// assert x.s.len > 1
//}
pool_s.work_on_items_s(['a','b','c','d','e','f','g','h','i','j'])
for x in pool_s.get_results_s() {
println( x.s )
assert x.s.len > 1
}
}
fn test_work_on_ints() {
// NB: since maxjobs is left empty here,
// the pool processor will use njobs = runtime.nr_jobs so that
// it will work optimally without overloading the system
mut pool_i := sync.new_pool_processor({
callback: worker_i
})
// TODO: uncomment this when generics work again
//pool_i.work_on_items([1,2,3,4,5,6,7,8])
//for x in pool_i.get_results<IResult>() {
// println( x.i )
// assert x.i > 100
//}
pool_i.work_on_items_i([1,2,3,4,5,6,7,8])
for x in pool_i.get_results_i() {
println( x.i )
assert x.i > 100
}
}

View File

@ -3,7 +3,7 @@ module main
import os
import v.tests.repl.runner
import benchmark
import sync
import sync.pool
const turn_off_vcolors = os.setenv('VCOLORS', 'never', true)
@ -39,7 +39,7 @@ fn test_all_v_repl_files() {
panic(err)
}
session.bmark.set_total_expected_steps(session.options.files.len)
mut pool_repl := sync.new_pool_processor(
mut pool_repl := pool.new_pool_processor(
callback: worker_repl
)
pool_repl.set_shared_context(session)
@ -47,12 +47,12 @@ fn test_all_v_repl_files() {
// See: https://docs.microsoft.com/en-us/cpp/build/reference/fs-force-synchronous-pdb-writes?view=vs-2019
pool_repl.set_max_jobs(1)
}
pool_repl.work_on_items_s(session.options.files)
pool_repl.work_on_items<string>(session.options.files)
session.bmark.stop()
println(session.bmark.total_message('total time spent running REPL files'))
}
fn worker_repl(mut p sync.PoolProcessor, idx int, thread_id int) voidptr {
fn worker_repl(mut p pool.PoolProcessor, idx int, thread_id int) voidptr {
cdir := os.cache_dir()
mut session := &Session(p.get_shared_context())
mut tls_bench := &benchmark.Benchmark(p.get_thread_context(idx))
@ -67,7 +67,7 @@ fn worker_repl(mut p sync.PoolProcessor, idx int, thread_id int) voidptr {
os.rmdir_all(tfolder) or { panic(err) }
}
os.mkdir(tfolder) or { panic(err) }
file := p.get_string_item(idx)
file := p.get_item<string>(idx)
session.bmark.step()
tls_bench.step()
fres := runner.run_repl_file(tfolder, session.options.vexec, file) or {
@ -76,12 +76,12 @@ fn worker_repl(mut p sync.PoolProcessor, idx int, thread_id int) voidptr {
os.rmdir_all(tfolder) or { panic(err) }
eprintln(tls_bench.step_message_fail(err))
assert false
return sync.no_result
return pool.no_result
}
session.bmark.ok()
tls_bench.ok()
os.rmdir_all(tfolder) or { panic(err) }
println(tls_bench.step_message_ok(fres))
assert true
return sync.no_result
return pool.no_result
}