examples: use vcalloc
parent
c203a744fe
commit
59a65d757b
|
@ -46,8 +46,8 @@ fn new_automaton(f [][]int) Automaton {
|
|||
maxx = f[y].len
|
||||
}
|
||||
}
|
||||
field := &A2D{ maxx: maxx maxy: maxy data: &int( calloc( sizeof(int) * maxy * maxx ) ) }
|
||||
new_field := &A2D{ maxx: maxx maxy: maxy data: &int( calloc( sizeof(int) * maxy * maxx ) ) }
|
||||
field := &A2D{ maxx: maxx maxy: maxy data: &int( vcalloc( sizeof(int) * maxy * maxx ) ) }
|
||||
new_field := &A2D{ maxx: maxx maxy: maxy data: &int( vcalloc( sizeof(int) * maxy * maxx ) ) }
|
||||
for y in 0..field.maxy {
|
||||
for x in 0..field.maxx {
|
||||
field.set( x, y, f[y][x] )
|
||||
|
|
|
@ -8,7 +8,7 @@
|
|||
* This file contains a path tracer example in less of 500 line of codes
|
||||
* 3 demo scenes included
|
||||
*
|
||||
* This code is inspired by:
|
||||
* This code is inspired by:
|
||||
* - "Realistic Ray Tracing" by Peter Shirley 2000 ISBN-13: 978-1568814612
|
||||
* - https://www.kevinbeason.com/smallpt/
|
||||
*
|
||||
|
@ -16,13 +16,13 @@
|
|||
* - there are some approximation errors in the calculations
|
||||
* - to speed-up the code a cos/sin table is used
|
||||
* - the full precision code is present but commented, can be restored very easily
|
||||
* - an higher number of samples ( > 60) can block the program on higher resolutions
|
||||
* - an higher number of samples ( > 60) can block the program on higher resolutions
|
||||
* without a stack size increase
|
||||
* - as a recursive program this code depend on the stack size,
|
||||
* - as a recursive program this code depend on the stack size,
|
||||
* for higher number of samples increase the stack size
|
||||
* in linux: ulimit -s byte_size_of_the_stack
|
||||
* example: ulimit -s 16000000
|
||||
* - No OpenMP support
|
||||
* - No OpenMP support
|
||||
**********************************************************************/
|
||||
import os
|
||||
import math
|
||||
|
@ -34,10 +34,10 @@ const (
|
|||
eps = f64(1e-4)
|
||||
f_0 = f64(0.0)
|
||||
)
|
||||
|
||||
|
||||
/***************************** 3D Vector utility struct **********************/
|
||||
struct Vec {
|
||||
mut:
|
||||
struct Vec {
|
||||
mut:
|
||||
x f64 = f64(0.0)
|
||||
y f64 = f64(0.0)
|
||||
z f64 = f64(0.0)
|
||||
|
@ -94,7 +94,7 @@ fn new_image(w int, h int) Image {
|
|||
return Image{
|
||||
width: w,
|
||||
height: h,
|
||||
data: &Vec(calloc(sizeof(Vec)*w*h))
|
||||
data: &Vec(vcalloc(sizeof(Vec)*w*h))
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -121,11 +121,11 @@ struct Ray {
|
|||
}
|
||||
|
||||
// material types, used in radiance()
|
||||
enum Refl_t {
|
||||
diff,
|
||||
spec,
|
||||
refr
|
||||
}
|
||||
enum Refl_t {
|
||||
diff,
|
||||
spec,
|
||||
refr
|
||||
}
|
||||
|
||||
/********************************* Sphere ************************************/
|
||||
struct Sphere {
|
||||
|
@ -137,21 +137,21 @@ struct Sphere {
|
|||
}
|
||||
|
||||
fn (sp Sphere) intersect (r Ray) f64 {
|
||||
op := sp.p - r.o // Solve t^2*d.d + 2*t*(o-p).d + (o-p).(o-p)-R^2 = 0
|
||||
op := sp.p - r.o // Solve t^2*d.d + 2*t*(o-p).d + (o-p).(o-p)-R^2 = 0
|
||||
b := op.dot(r.d)
|
||||
mut det := b * b - op.dot(op) + sp.rad * sp.rad
|
||||
|
||||
if det < 0 {
|
||||
return f64(0)
|
||||
}
|
||||
|
||||
|
||||
det = math.sqrt(det)
|
||||
|
||||
|
||||
mut t := b - det
|
||||
if t > eps {
|
||||
return t
|
||||
}
|
||||
|
||||
|
||||
t = b + det
|
||||
if t > eps {
|
||||
return t
|
||||
|
@ -165,19 +165,19 @@ fn (sp Sphere) intersect (r Ray) f64 {
|
|||
* 2) Psychedelic
|
||||
* The sphere fileds are: Sphere{radius, position, emission, color, material}
|
||||
******************************************************************************/
|
||||
const (
|
||||
const (
|
||||
Cen = Vec{50, 40.8, -860} // used by scene 1
|
||||
spheres = [
|
||||
[// scene 0 cornnel box
|
||||
Sphere{rad: 1e+5, p: Vec{ 1e+5 +1,40.8,81.6} , e: Vec{} , c: Vec{.75,.25,.25} , refl: .diff},//Left
|
||||
Sphere{rad: 1e+5, p: Vec{-1e+5 +99,40.8,81.6}, e: Vec{} , c: Vec{.25,.25,.75} , refl: .diff},//Rght
|
||||
Sphere{rad: 1e+5, p: Vec{50,40.8, 1e+5} , e: Vec{} , c: Vec{.75,.75,.75} , refl: .diff},//Back
|
||||
Sphere{rad: 1e+5, p: Vec{50,40.8,-1e+5 +170} , e: Vec{} , c: Vec{} , refl: .diff},//Frnt
|
||||
Sphere{rad: 1e+5, p: Vec{50, 1e+5, 81.6} , e: Vec{} , c: Vec{.75,.75,.75} , refl: .diff},//Botm
|
||||
Sphere{rad: 1e+5, p: Vec{50,-1e+5 +81.6,81.6}, e: Vec{} , c: Vec{.75,.75,.75} , refl: .diff},//Top
|
||||
Sphere{rad: 16.5, p: Vec{27,16.5,47} , e: Vec{} , c: Vec{1,1,1}.mult_s(.999) , refl: .spec},//Mirr
|
||||
Sphere{rad: 16.5, p: Vec{73,16.5,78} , e: Vec{} , c: Vec{1,1,1}.mult_s(.999) , refl: .refr},//Glas
|
||||
Sphere{rad: 600 , p: Vec{50,681.6-.27,81.6} , e: Vec{12,12,12}, c: Vec{}, refl: .diff} //Lite
|
||||
Sphere{rad: 1e+5, p: Vec{ 1e+5 +1,40.8,81.6} , e: Vec{} , c: Vec{.75,.25,.25} , refl: .diff},//Left
|
||||
Sphere{rad: 1e+5, p: Vec{-1e+5 +99,40.8,81.6}, e: Vec{} , c: Vec{.25,.25,.75} , refl: .diff},//Rght
|
||||
Sphere{rad: 1e+5, p: Vec{50,40.8, 1e+5} , e: Vec{} , c: Vec{.75,.75,.75} , refl: .diff},//Back
|
||||
Sphere{rad: 1e+5, p: Vec{50,40.8,-1e+5 +170} , e: Vec{} , c: Vec{} , refl: .diff},//Frnt
|
||||
Sphere{rad: 1e+5, p: Vec{50, 1e+5, 81.6} , e: Vec{} , c: Vec{.75,.75,.75} , refl: .diff},//Botm
|
||||
Sphere{rad: 1e+5, p: Vec{50,-1e+5 +81.6,81.6}, e: Vec{} , c: Vec{.75,.75,.75} , refl: .diff},//Top
|
||||
Sphere{rad: 16.5, p: Vec{27,16.5,47} , e: Vec{} , c: Vec{1,1,1}.mult_s(.999) , refl: .spec},//Mirr
|
||||
Sphere{rad: 16.5, p: Vec{73,16.5,78} , e: Vec{} , c: Vec{1,1,1}.mult_s(.999) , refl: .refr},//Glas
|
||||
Sphere{rad: 600 , p: Vec{50,681.6-.27,81.6} , e: Vec{12,12,12}, c: Vec{}, refl: .diff} //Lite
|
||||
],
|
||||
|
||||
[// scene 1 sunset
|
||||
|
@ -272,27 +272,27 @@ fn radiance(r Ray, depthi int, scene_id int) Vec {
|
|||
sin_tab := &f64( tabs.sin_tab )
|
||||
cos_tab := &f64( tabs.cos_tab )
|
||||
mut depth := depthi // actual depth in the reflection tree
|
||||
mut t := f64(0) // distance to intersection
|
||||
mut t := f64(0) // distance to intersection
|
||||
mut id := 0 // id of intersected object
|
||||
mut res := false // result of intersect
|
||||
|
||||
|
||||
v_1 := f64(1.0)
|
||||
//v_2 := f64(2.0)
|
||||
|
||||
|
||||
scene := spheres[scene_id]
|
||||
//res, t, id = intersect(r, id, tb.scene)
|
||||
res, t, id = intersect(r, scene.data, scene.len)
|
||||
if !res { return Vec{} } //if miss, return black
|
||||
|
||||
obj := scene[id] // the hit object
|
||||
|
||||
if !res { return Vec{} } //if miss, return black
|
||||
|
||||
obj := scene[id] // the hit object
|
||||
|
||||
x := r.o + r.d.mult_s(t)
|
||||
n := (x - obj.p).norm()
|
||||
|
||||
|
||||
nl := if n.dot(r.d) < 0.0 { n } else { n.mult_s(-1) }
|
||||
|
||||
|
||||
mut f := obj.c
|
||||
|
||||
|
||||
// max reflection
|
||||
mut p := f.z
|
||||
if f.x > f.y && f.x > f.z {
|
||||
|
@ -300,80 +300,80 @@ fn radiance(r Ray, depthi int, scene_id int) Vec {
|
|||
} else {
|
||||
if f.y > f.z {
|
||||
p = f.y
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
depth++
|
||||
if depth > 5 {
|
||||
if depth > 5 {
|
||||
if rand_f64() < p {
|
||||
f = f.mult_s(f64(1.0)/p)
|
||||
} else {
|
||||
return obj.e //R.R.
|
||||
}
|
||||
}
|
||||
|
||||
if obj.refl == .diff { // Ideal DIFFUSE reflection
|
||||
|
||||
if obj.refl == .diff { // Ideal DIFFUSE reflection
|
||||
// **Full Precision**
|
||||
//r1 := f64(2.0 * math.pi) * rand_f64()
|
||||
|
||||
|
||||
// tabbed speed-up
|
||||
r1 := C.rand() & cache_mask
|
||||
|
||||
|
||||
r2 := rand_f64()
|
||||
r2s := math.sqrt(r2)
|
||||
|
||||
|
||||
w := nl
|
||||
|
||||
|
||||
mut u := if math.abs(w.x) > f64(0.1) {
|
||||
Vec{0, 1, 0}
|
||||
} else {
|
||||
Vec{1, 0, 0}
|
||||
}
|
||||
u = u.cross(w).norm()
|
||||
|
||||
|
||||
v := w.cross(u)
|
||||
|
||||
|
||||
// **Full Precision**
|
||||
//d := (u.mult_s(math.cos(r1) * r2s) + v.mult_s(math.sin(r1) * r2s) + w.mult_s(1.0 - r2)).norm()
|
||||
|
||||
|
||||
// tabbed speed-up
|
||||
d := (u.mult_s(cos_tab[r1] * r2s) + v.mult_s(sin_tab[r1] * r2s) + w.mult_s(math.sqrt(f64(1.0) - r2))).norm()
|
||||
|
||||
|
||||
return obj.e + f * radiance(Ray{x, d}, depth, scene_id)
|
||||
} else {
|
||||
if obj.refl == .spec { // Ideal SPECULAR reflection
|
||||
return obj.e + f * radiance(Ray{x, r.d - n.mult_s(2.0 * n.dot(r.d)) }, depth, scene_id)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
refl_ray := Ray{x, r.d - n.mult_s(2.0 * n.dot(r.d))} // Ideal dielectric REFRACTION
|
||||
into := n.dot(nl) > 0 // Ray from outside going in?
|
||||
|
||||
into := n.dot(nl) > 0 // Ray from outside going in?
|
||||
|
||||
nc := f64(1.0)
|
||||
nt := f64(1.5)
|
||||
|
||||
|
||||
nnt := if into { nc / nt } else { nt / nc }
|
||||
|
||||
|
||||
ddn := r.d.dot(nl)
|
||||
cos2t := v_1 - nnt * nnt * (v_1 - ddn * ddn)
|
||||
if cos2t < 0.0 { // Total internal reflection
|
||||
return obj.e + f * radiance(refl_ray, depth, scene_id)
|
||||
}
|
||||
|
||||
|
||||
dirc := if into { f64(1) } else { f64(-1) }
|
||||
tdir := (r.d.mult_s(nnt) - n.mult_s(dirc * (ddn * nnt + math.sqrt(cos2t)))).norm()
|
||||
|
||||
|
||||
a := nt - nc
|
||||
b := nt + nc
|
||||
r0 := a * a / (b * b)
|
||||
r0 := a * a / (b * b)
|
||||
c := if into { v_1 + ddn } else { v_1 - tdir.dot(n) }
|
||||
|
||||
|
||||
re := r0 + (v_1 - r0) * c * c * c * c * c
|
||||
tr := v_1 - re
|
||||
pp := f64(.25) + f64(.5) * re
|
||||
rp := re / pp
|
||||
tp := tr / (v_1 - pp)
|
||||
|
||||
|
||||
mut tmp := Vec{}
|
||||
if depth > 2 {
|
||||
// Russian roulette
|
||||
|
@ -391,26 +391,26 @@ fn radiance(r Ray, depthi int, scene_id int) Vec {
|
|||
/************************ beam scan routine **********************************/
|
||||
fn ray_trace(w int, h int, samps int, file_name string, scene_id int) Image {
|
||||
image := new_image(w, h)
|
||||
|
||||
|
||||
// inverse costants
|
||||
w1 := f64(1.0 / w)
|
||||
h1 := f64(1.0 / h)
|
||||
samps1 := f64(1.0 / samps)
|
||||
|
||||
|
||||
cam := Ray{Vec{50, 52, 295.6}, Vec{0, -0.042612, -1}.norm()} // cam position, direction
|
||||
cx := Vec{ f64(w) * 0.5135 / f64(h), 0, 0}
|
||||
cy := cx.cross(cam.d).norm().mult_s(0.5135)
|
||||
mut r := Vec{}
|
||||
|
||||
|
||||
// speed-up constants
|
||||
v_1 := f64(1.0)
|
||||
v_2 := f64(2.0)
|
||||
|
||||
|
||||
// OpenMP injection point! #pragma omp parallel for schedule(dynamic, 1) shared(c)
|
||||
for y:=0; y < h; y++ {
|
||||
eprint("\rRendering (${samps * 4} spp) ${(100.0 * f64(y)) / (f64(h) - 1.0):5.2f}%")
|
||||
for x in 0..w {
|
||||
|
||||
|
||||
i := (h - y - 1) * w + x
|
||||
mut ivec := &image.data[i]
|
||||
// we use sx and sy to perform a square subsampling of 4 samples
|
||||
|
@ -420,11 +420,11 @@ fn ray_trace(w int, h int, samps int, file_name string, scene_id int) Image {
|
|||
for s in 0..samps {
|
||||
r1 := v_2 * rand_f64()
|
||||
dx := if r1 < v_1 { math.sqrt(r1) - v_1 } else { v_1 - math.sqrt(v_2 - r1) }
|
||||
|
||||
|
||||
r2 := v_2 * rand_f64()
|
||||
dy := if r2 < v_1 { math.sqrt(r2) - v_1 } else { v_1 - math.sqrt(v_2 - r2) }
|
||||
|
||||
d := cx.mult_s( ( (f64(sx) + 0.5 + dx)*0.5 + f64(x))*w1 - .5) +
|
||||
|
||||
d := cx.mult_s( ( (f64(sx) + 0.5 + dx)*0.5 + f64(x))*w1 - .5) +
|
||||
cy.mult_s( ( (f64(sy) + 0.5 + dy)*0.5 + f64(y))*h1 - .5) + cam.d
|
||||
r = r + radiance(Ray{cam.o+d.mult_s(140.0), d.norm()}, 0, scene_id).mult_s(samps1)
|
||||
}
|
||||
|
@ -432,7 +432,7 @@ fn ray_trace(w int, h int, samps int, file_name string, scene_id int) Image {
|
|||
*ivec = *ivec + tmp_vec
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return image
|
||||
}
|
||||
|
@ -447,7 +447,7 @@ fn main() {
|
|||
mut samples := 4 // number of samples per pixel, increase for better quality
|
||||
mut scene_id := 0 // scene to render [0 cornell box,1 sunset,2 psyco]
|
||||
mut file_name := 'image.ppm' // name of the output file in .ppm format
|
||||
|
||||
|
||||
if os.args.len >= 2 {
|
||||
samples = os.args[1].int() / 4
|
||||
}
|
||||
|
@ -463,20 +463,20 @@ fn main() {
|
|||
if os.args.len == 6 {
|
||||
height = os.args[5].int()
|
||||
}
|
||||
|
||||
|
||||
// init the rand, using the same seed allows to obtain the same result in different runs
|
||||
// change the seed from 2020 for different results
|
||||
rand.seed(2020)
|
||||
|
||||
rand.seed(2020)
|
||||
|
||||
t1:=time.ticks()
|
||||
|
||||
image := ray_trace(width, height, samples, file_name, scene_id)
|
||||
image := ray_trace(width, height, samples, file_name, scene_id)
|
||||
t2:=time.ticks()
|
||||
|
||||
|
||||
eprintln('\nRendering finished. Took: ${t2-t1:5d}ms')
|
||||
|
||||
image.save_as_ppm( file_name )
|
||||
|
||||
image.save_as_ppm( file_name )
|
||||
t3:=time.ticks()
|
||||
|
||||
|
||||
eprintln('Image saved as [${file_name}]. Took: ${t3-t2:5d}ms')
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue