math.bits: added missing functions and test

pull/3721/head
penguindark 2020-02-12 11:32:03 +01:00 committed by GitHub
parent d9cf98f772
commit 67e7ad13de
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 365 additions and 19 deletions

View File

@ -96,6 +96,7 @@ pub fn trailing_zeros_64(x u64) int {
} }
// --- OnesCount --- // --- OnesCount ---
// ones_count_8 returns the number of one bits ("population count") in x. // ones_count_8 returns the number of one bits ("population count") in x.
pub fn ones_count_8(x byte) int { pub fn ones_count_8(x byte) int {
return int(pop_8_tab[x]) return int(pop_8_tab[x])
@ -142,6 +143,7 @@ pub fn ones_count_64(x u64) int {
} }
// --- RotateLeft --- // --- RotateLeft ---
// rotate_left_8 returns the value of x rotated left by (k mod 8) bits. // rotate_left_8 returns the value of x rotated left by (k mod 8) bits.
// To rotate x right by k bits, call rotate_left_8(x, -k). // To rotate x right by k bits, call rotate_left_8(x, -k).
// //
@ -187,6 +189,7 @@ pub fn rotate_left_64(x u64, k int) u64 {
} }
// --- Reverse --- // --- Reverse ---
// reverse_8 returns the value of x with its bits in reversed order. // reverse_8 returns the value of x with its bits in reversed order.
[inline] [inline]
pub fn reverse_8(x byte) byte { pub fn reverse_8(x byte) byte {
@ -218,6 +221,7 @@ pub fn reverse_64(x u64) u64 {
} }
// --- ReverseBytes --- // --- ReverseBytes ---
// reverse_bytes_16 returns the value of x with its bytes in reversed order. // reverse_bytes_16 returns the value of x with its bytes in reversed order.
// //
// This function's execution time does not depend on the inputs. // This function's execution time does not depend on the inputs.
@ -246,6 +250,7 @@ pub fn reverse_bytes_64(x u64) u64 {
} }
// --- Len --- // --- Len ---
// len_8 returns the minimum number of bits required to represent x; the result is 0 for x == 0. // len_8 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
pub fn len_8(x byte) int { pub fn len_8(x byte) int {
return int(len_8_tab[x]) return int(len_8_tab[x])
@ -296,3 +301,195 @@ pub fn len_64(x u64) int {
return n + int(len_8_tab[y]) return n + int(len_8_tab[y])
} }
// --- Add with carry ---
// Add returns the sum with carry of x, y and carry: sum = x + y + carry.
// The carry input must be 0 or 1; otherwise the behavior is undefined.
// The carryOut output is guaranteed to be 0 or 1.
//
// add_32 returns the sum with carry of x, y and carry: sum = x + y + carry.
// The carry input must be 0 or 1; otherwise the behavior is undefined.
// The carryOut output is guaranteed to be 0 or 1.
//
// This function's execution time does not depend on the inputs.
fn add_32(x u32, y u32, carry u32) (u32, u32) {
sum64 := u64(x) + u64(y) + u64(carry)
sum := u32(sum64)
carry_out := u32(sum64>>32)
return sum, carry_out
}
// add_64 returns the sum with carry of x, y and carry: sum = x + y + carry.
// The carry input must be 0 or 1; otherwise the behavior is undefined.
// The carryOut output is guaranteed to be 0 or 1.
//
// This function's execution time does not depend on the inputs.
fn add_64(x u64, y u64, carry u64) (u64, u64) {
sum := x + y + carry
// The sum will overflow if both top bits are set (x & y) or if one of them
// is (x | y), and a carry from the lower place happened. If such a carry
// happens, the top bit will be 1 + 0 + 1 = 0 (&^ sum).
carry_out := ((x & y) | ((x | y) & ~sum ))>>63
return sum, carry_out
}
// --- Subtract with borrow ---
// Sub returns the difference of x, y and borrow: diff = x - y - borrow.
// The borrow input must be 0 or 1; otherwise the behavior is undefined.
// The borrowOut output is guaranteed to be 0 or 1.
//
// sub_32 returns the difference of x, y and borrow, diff = x - y - borrow.
// The borrow input must be 0 or 1; otherwise the behavior is undefined.
// The borrowOut output is guaranteed to be 0 or 1.
//
// This function's execution time does not depend on the inputs.
fn sub_32(x u32, y u32, borrow u32) (u32, u32) {
diff := x - y - borrow
// The difference will underflow if the top bit of x is not set and the top
// bit of y is set (^x & y) or if they are the same (^(x ^ y)) and a borrow
// from the lower place happens. If that borrow happens, the result will be
// 1 - 1 - 1 = 0 - 0 - 1 = 1 (& diff).
borrow_out := ((~x & y) | (~(x ^ y) & diff))>>31
return diff, borrow_out
}
// sub_64 returns the difference of x, y and borrow: diff = x - y - borrow.
// The borrow input must be 0 or 1; otherwise the behavior is undefined.
// The borrowOut output is guaranteed to be 0 or 1.
//
// This function's execution time does not depend on the inputs.
fn sub_64(x u64, y u64, borrow u64) (u64, u64) {
diff := x - y - borrow
// See Sub32 for the bit logic.
borrow_out := ((~x & y) | (~(x ^ y) & diff))>>63
return diff, borrow_out
}
// --- Full-width multiply ---
const (
two32 = u64(0x1_0000_0000)
mask32 = two32 - 1
overflow_error = "Overflow Error"
divide_error = "Divide Error"
)
// mul_32 returns the 64-bit product of x and y: (hi, lo) = x * y
// with the product bits' upper half returned in hi and the lower
// half returned in lo.
//
// This function's execution time does not depend on the inputs.
fn mul_32(x u32, y u32) (u32, u32) {
tmp := u64(x) * u64(y)
hi := u32(tmp>>32)
lo := u32(tmp)
return hi, lo
}
// mul_64 returns the 128-bit product of x and y: (hi, lo) = x * y
// with the product bits' upper half returned in hi and the lower
// half returned in lo.
//
// This function's execution time does not depend on the inputs.
fn mul_64(x u64, y u64) (u64, u64) {
x0 := x & mask32
x1 := x>>32
y0 := y & mask32
y1 := y>>32
w0 := x0 * y0
t := x1*y0 + (w0>>32)
mut w1 := t & mask32
w2 := t>>32
w1 += x0 * y1
hi := x1*y1 + w2 + (w1>>32)
lo := x * y
return hi, lo
}
// --- Full-width divide ---
// div_32 returns the quotient and remainder of (hi, lo) divided by y:
// quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
// half in parameter hi and the lower half in parameter lo.
// div_32 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
fn div_32(hi u32, lo u32, y u32) (u32, u32) {
if y != 0 && y <= hi {
panic(overflow_error)
}
z := (u64(hi)<<32) | u64(lo)
quo := u32(z/u64(y))
rem := u32(z%u64(y))
return quo, rem
}
// div_64 returns the quotient and remainder of (hi, lo) divided by y:
// quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
// half in parameter hi and the lower half in parameter lo.
// div_64 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
fn div_64(hi u64, lo u64, y1 u64) (u64, u64) {
mut y := y1
if y == 0 {
panic(overflow_error)
}
if y <= hi {
panic(overflow_error)
}
s := u32(leading_zeros_64(y))
y <<= s
yn1 := y>>32
yn0 := y & mask32
un32 := (hi<<s) | (lo>>(64-s))
un10 := lo<<s
un1 := un10>>32
un0 := un10 & mask32
mut q1 := un32 / yn1
mut rhat := un32 - q1*yn1
for q1 >= two32 || q1*yn0 > two32*rhat+un1 {
q1--
rhat += yn1
if rhat >= two32 {
break
}
}
un21 := un32*two32 + un1 - q1*y
mut q0 := un21 / yn1
rhat = un21 - q0*yn1
for q0 >= two32 || q0*yn0 > two32*rhat+un0 {
q0--
rhat += yn1
if rhat >= two32 {
break
}
}
return q1*two32 + q0, (un21*two32 + un0 - q0*y)>>s
}
// rem_32 returns the remainder of (hi, lo) divided by y. Rem32 panics
// for y == 0 (division by zero) but, unlike Div32, it doesn't panic
// on a quotient overflow.
fn rem_32(hi u32, lo u32, y u32) u32 {
return u32((u64(hi)<<32 | u64(lo)) % u64(y))
}
// rem_64 returns the remainder of (hi, lo) divided by y. Rem64 panics
// for y == 0 (division by zero) but, unlike div_64, it doesn't panic
// on a quotient overflow.
fn rem_64(hi, lo, y u64) u64 {
// We scale down hi so that hi < y, then use div_64 to compute the
// rem with the guarantee that it won't panic on quotient overflow.
// Given that
// hi ≡ hi%y (mod y)
// we have
// hi<<64 + lo ≡ (hi%y)<<64 + lo (mod y)
_, rem := div_64(hi%y, lo, y)
return rem
}

View File

@ -1,8 +1,12 @@
//
// test suite for bits and bits math functions
//
module bits module bits
fn test_bits(){ fn test_bits(){
mut i := 0 mut i := 0
mut i1:= u64(0) mut i1:= u64(0)
// //
// --- LeadingZeros --- // --- LeadingZeros ---
// //
@ -13,18 +17,21 @@ fn test_bits(){
//C.printf("x:%02x lz: %d cmp: %d\n", i << x, leading_zeros_8(i << x), 7-x) //C.printf("x:%02x lz: %d cmp: %d\n", i << x, leading_zeros_8(i << x), 7-x)
assert leading_zeros_8(byte(i << x)) == 7 - x assert leading_zeros_8(byte(i << x)) == 7 - x
} }
// 16 bit // 16 bit
i = 1 i = 1
for x in 0..16 { for x in 0..16 {
//C.printf("x:%04x lz: %d cmp: %d\n", u16(i) << x, leading_zeros_16(u16(i) << x), 15-x) //C.printf("x:%04x lz: %d cmp: %d\n", u16(i) << x, leading_zeros_16(u16(i) << x), 15-x)
assert leading_zeros_16(u16(i) << x) == 15 - x assert leading_zeros_16(u16(i) << x) == 15 - x
} }
// 32 bit // 32 bit
i = 1 i = 1
for x in 0..32 { for x in 0..32 {
//C.printf("x:%08x lz: %d cmp: %d\n", u32(i) << x, leading_zeros_32(u32(i) << x), 31-x) //C.printf("x:%08x lz: %d cmp: %d\n", u32(i) << x, leading_zeros_32(u32(i) << x), 31-x)
assert leading_zeros_32(u32(i) << x) == 31 - x assert leading_zeros_32(u32(i) << x) == 31 - x
} }
// 64 bit // 64 bit
i = 1 i = 1
for x in 0..64 { for x in 0..64 {
@ -43,6 +50,7 @@ fn test_bits(){
assert ones_count_8(byte(i)) == x assert ones_count_8(byte(i)) == x
i = (i << 1) + 1 i = (i << 1) + 1
} }
// 16 bit // 16 bit
i = 0 i = 0
for x in 0..17 { for x in 0..17 {
@ -50,6 +58,7 @@ fn test_bits(){
assert ones_count_16(u16(i)) == x assert ones_count_16(u16(i)) == x
i = (i << 1) + 1 i = (i << 1) + 1
} }
// 32 bit // 32 bit
i = 0 i = 0
for x in 0..33 { for x in 0..33 {
@ -57,11 +66,12 @@ fn test_bits(){
assert ones_count_32(u32(i)) == x assert ones_count_32(u32(i)) == x
i = (i << 1) + 1 i = (i << 1) + 1
} }
// 64 bit // 64 bit
i1 = 0 i1 = 0
for x in 0..65 { for x in 0..65 {
//C.printf("x:%016llx lz: %llu cmp: %d\n", u64(i1), ones_count_64(u64(i1)), x) //C.printf("x:%016llx lz: %llu cmp: %d\n", u64(i1), ones_count_64(u64(i1)), x)
assert ones_count_64(u64(i1)) == x assert ones_count_64(i1) == x
i1 = (i1 << 1) + 1 i1 = (i1 << 1) + 1
} }
@ -92,6 +102,7 @@ fn test_bits(){
assert reverse_8(byte(i)) == rv assert reverse_8(byte(i)) == rv
i = (i << 1) + 1 i = (i << 1) + 1
} }
// 16 bit // 16 bit
i = 0 i = 0
for x in 0..17 { for x in 0..17 {
@ -107,6 +118,7 @@ fn test_bits(){
assert reverse_16(u16(i)) == rv assert reverse_16(u16(i)) == rv
i = (i << 1) + 1 i = (i << 1) + 1
} }
// 32 bit // 32 bit
i = 0 i = 0
for x in 0..33 { for x in 0..33 {
@ -122,6 +134,7 @@ fn test_bits(){
assert reverse_32(u32(i)) == rv assert reverse_32(u32(i)) == rv
i = (i << 1) + 1 i = (i << 1) + 1
} }
// 64 bit // 64 bit
i1 = 0 i1 = 0
for x in 0..64 { for x in 0..64 {
@ -134,7 +147,143 @@ fn test_bits(){
n = n >> 1 n = n >> 1
} }
//C.printf("x:%016llx lz: %016llx cmp: %016llx\n", u64(i1), reverse_64(u64(i1)), rv) //C.printf("x:%016llx lz: %016llx cmp: %016llx\n", u64(i1), reverse_64(u64(i1)), rv)
assert reverse_64(u64(i1)) == rv assert reverse_64(i1) == rv
i1 = (i1 << 1) + 1 i1 = (i1 << 1) + 1
} }
//
// --- add ---
//
// 32 bit
i = 1
for x in 0..32 {
v := u32(i) << x
sum,carry := add_32(v, v, u32(0))
//C.printf("x:%08x [%llu,%llu] %llu\n", u32(i) << x, sum, carry, u64(v) + u64(v))
assert ((u64(carry) << 32) | u64(sum)) == u64(v) + u64(v)
}
mut sum_32t, mut carry_32t := add_32(0x8000_0000, 0x8000_0000, u32(0))
assert sum_32t == u32(0)
assert carry_32t == u32(1)
sum_32t, carry_32t = add_32(0xFFFF_FFFF, 0xFFFF_FFFF, u32(1))
assert sum_32t == 0xFFFF_FFFF
assert carry_32t == u32(1)
// 64 bit
i = 1
for x in 0..63 {
v := u64(i) << x
sum,carry := add_64(v, v, u64(0))
//C.printf("x:%16x [%llu,%llu] %llu\n", u64(i) << x, sum, carry, u64(v >> 32) + u64(v >> 32))
assert ((carry << 32) | sum) == v + v
}
mut sum_64t, mut carry_64t := add_64(0x8000_0000_0000_0000, 0x8000_0000_0000_0000, u64(0))
assert sum_64t == u64(0)
assert carry_64t == u64(1)
sum_64t, carry_64t = add_64(0xFFFF_FFFF_FFFF_FFFF, 0xFFFF_FFFF_FFFF_FFFF, u64(1))
assert sum_64t == 0xFFFF_FFFF_FFFF_FFFF
assert carry_64t == u64(1)
//
// --- sub ---
//
// 32 bit
i = 1
for x in 1..32 {
v0 := u32(i) << x
v1 := v0 >> 1
mut diff, mut borrow_out := sub_32(v0, v1, u32(0))
//C.printf("x:%08x [%llu,%llu] %08x\n", u32(i) << x, diff, borrow_out, v0 - v1)
assert diff == v1
diff, borrow_out = sub_32(v0, v1, u32(1))
//C.printf("x:%08x [%llu,%llu] %08x\n", u32(i) << x, diff, borrow_out, v0 - v1)
assert diff == (v1 - 1)
assert borrow_out == u32(0)
diff, borrow_out = sub_32(v1, v0, u32(1))
//C.printf("x:%08x [%llu,%llu] %08x\n", u32(i) << x, diff, borrow_out, v1 - v0)
assert borrow_out == u32(1)
}
// 64 bit
i = 1
for x in 1..64 {
v0 := u64(i) << x
v1 := v0 >> 1
mut diff, mut borrow_out := sub_64(v0, v1, u64(0))
//C.printf("x:%08x [%llu,%llu] %08x\n", u64(i) << x, diff, borrow_out, v0 - v1)
assert diff == v1
diff, borrow_out = sub_64(v0, v1, u64(1))
//C.printf("x:%08x [%llu,%llu] %08x\n", u64(i) << x, diff, borrow_out, v0 - v1)
assert diff == (v1 - 1)
assert borrow_out == u64(0)
diff, borrow_out = sub_64(v1, v0, u64(1))
//C.printf("x:%08x [%llu,%llu] %08x\n",u64(i) << x, diff, borrow_out, v1 - v0)
assert borrow_out == u64(1)
}
//
// --- mul ---
//
// 32 bit
i = 1
for x in 0..32 {
v0 := u32(i) << x
v1 := v0 - 1
hi, lo := mul_32(v0, v1)
//C.printf("x:%08x [%llu,%llu] %llu\n", v0, hi, lo, u64(v0 * v1))
assert (u64(hi) << 32) | (u64(lo)) == u64(v0 * v1)
}
// 64 bit
i = 1
for x in 0..64 {
v0 := u64(i) << x
v1 := v0 - 1
hi, lo := mul_64(v0, v1)
//C.printf("v0: %llu v1: %llu [%llu,%llu] tt: %llu\n", v0, v1, hi, lo, (v0 >> 32) * (v1 >> 32))
assert (hi & 0xFFFF_FFFF_0000_0000) == (((v0 >> 32)*(v1 >> 32)) & 0xFFFF_FFFF_0000_0000)
assert (lo & 0x0000_0000_FFFF_FFFF) == (((v0 & 0x0000_0000_FFFF_FFFF) * (v1 & 0x0000_0000_FFFF_FFFF)) & 0x0000_0000_FFFF_FFFF)
}
//
// --- div ---
//
// 32 bit
i = 1
for x in 0..31 {
hi := u32(i) << x
lo := hi - 1
y := u32(3) << x
quo, rem := div_32(hi, lo, y)
//C.printf("[%08x_%08x] %08x (%08x,%08x)\n", hi, lo, y, quo, rem)
tst := ((u64(hi) << 32) | u64(lo))
assert quo == (tst / u64(y))
assert rem == (tst % u64(y))
assert rem == rem_32(hi, lo, y)
}
// 64 bit
i = 1
for x in 0..62 {
hi := u64(i) << x
lo := u64(2) //hi - 1
y := 0x4000_0000_0000_0000
quo, rem := div_64(hi, lo, y)
//C.printf("[%016llx_%016llx] %016llx (%016llx,%016llx)\n", hi, lo, y, quo, rem)
assert quo == u64(2)<<(x+1)
_, rem1 := div_64(hi%y, lo, y)
assert rem == rem1
assert rem == rem_64(hi, lo, y)
}
} }