math: added complex trig operations
parent
1b09e37a80
commit
69d2db0f1e
|
@ -158,6 +158,60 @@ pub fn (c Complex) ln() Complex {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Complex Sin
|
||||||
|
// Based on
|
||||||
|
// http://www.milefoot.com/math/complex/functionsofi.htm
|
||||||
|
pub fn (c Complex) sin() Complex {
|
||||||
|
return Complex{
|
||||||
|
sin(c.re) * cosh(c.im),
|
||||||
|
cos(c.re) * sinh(c.im)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Complex Cosine
|
||||||
|
// Based on
|
||||||
|
// http://www.milefoot.com/math/complex/functionsofi.htm
|
||||||
|
pub fn (c Complex) cos() Complex {
|
||||||
|
return Complex{
|
||||||
|
cos(c.re) * cosh(c.im),
|
||||||
|
-(sin(c.re) * sinh(c.im))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Complex Tangent
|
||||||
|
// Based on
|
||||||
|
// http://www.milefoot.com/math/complex/functionsofi.htm
|
||||||
|
pub fn (c Complex) tan() Complex {
|
||||||
|
return c.sin().divide(c.cos())
|
||||||
|
}
|
||||||
|
|
||||||
|
// Complex Hyperbolic Sin
|
||||||
|
// Based on
|
||||||
|
// http://www.milefoot.com/math/complex/functionsofi.htm
|
||||||
|
pub fn (c Complex) sinh() Complex {
|
||||||
|
return Complex{
|
||||||
|
cos(c.im) * sinh(c.re),
|
||||||
|
sin(c.im) * cosh(c.re)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Complex Hyperbolic Cosine
|
||||||
|
// Based on
|
||||||
|
// http://www.milefoot.com/math/complex/functionsofi.htm
|
||||||
|
pub fn (c Complex) cosh() Complex {
|
||||||
|
return Complex{
|
||||||
|
cos(c.im) * cosh(c.re),
|
||||||
|
sin(c.im) * sinh(c.re)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Complex Hyperbolic Tangent
|
||||||
|
// Based on
|
||||||
|
// http://www.milefoot.com/math/complex/functionsofi.htm
|
||||||
|
pub fn (c Complex) tanh() Complex {
|
||||||
|
return c.sinh().divide(c.cosh())
|
||||||
|
}
|
||||||
|
|
||||||
// Complex Equals
|
// Complex Equals
|
||||||
pub fn (c1 Complex) equals(c2 Complex) bool {
|
pub fn (c1 Complex) equals(c2 Complex) bool {
|
||||||
return (c1.re == c2.re) && (c1.im == c2.im)
|
return (c1.re == c2.re) && (c1.im == c2.im)
|
||||||
|
|
|
@ -252,3 +252,117 @@ fn test_complex_ln() {
|
||||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
assert result.str().eq(c2.str())
|
assert result.str().eq(c2.str())
|
||||||
}
|
}
|
||||||
|
|
||||||
|
fn test_complex_sin() {
|
||||||
|
// Tests were also verified on Wolfram Alpha
|
||||||
|
mut c1 := math.complex(5,7)
|
||||||
|
mut c2 := math.complex(-525.794515,155.536550)
|
||||||
|
mut result := c1.sin()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = math.complex(-3,4)
|
||||||
|
c2 = math.complex(-3.853738,-27.016813)
|
||||||
|
result = c1.sin()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = math.complex(-1,-2)
|
||||||
|
c2 = math.complex(-3.165779,-1.959601)
|
||||||
|
result = c1.sin()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
}
|
||||||
|
|
||||||
|
fn test_complex_cos() {
|
||||||
|
// Tests were also verified on Wolfram Alpha
|
||||||
|
mut c1 := math.complex(5,7)
|
||||||
|
mut c2 := math.complex(155.536809,525.793641)
|
||||||
|
mut result := c1.cos()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = math.complex(-3,4)
|
||||||
|
c2 = math.complex(-27.034946,3.851153)
|
||||||
|
result = c1.cos()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = math.complex(-1,-2)
|
||||||
|
c2 = math.complex(2.032723,-3.051898)
|
||||||
|
result = c1.cos()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
}
|
||||||
|
|
||||||
|
fn test_complex_tan() {
|
||||||
|
// Tests were also verified on Wolfram Alpha
|
||||||
|
mut c1 := math.complex(5,7)
|
||||||
|
mut c2 := math.complex(-0.000001,1.000001)
|
||||||
|
mut result := c1.tan()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = math.complex(-3,4)
|
||||||
|
c2 = math.complex(0.000187,0.999356)
|
||||||
|
result = c1.tan()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = math.complex(-1,-2)
|
||||||
|
c2 = math.complex(-0.033813,-1.014794)
|
||||||
|
result = c1.tan()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
}
|
||||||
|
|
||||||
|
fn test_complex_sinh() {
|
||||||
|
// Tests were also verified on Wolfram Alpha
|
||||||
|
mut c1 := math.complex(5,7)
|
||||||
|
mut c2 := math.complex(55.941968,48.754942)
|
||||||
|
mut result := c1.sinh()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = math.complex(-3,4)
|
||||||
|
c2 = math.complex(6.548120,-7.619232)
|
||||||
|
result = c1.sinh()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = math.complex(-1,-2)
|
||||||
|
c2 = math.complex(0.489056,-1.403119)
|
||||||
|
result = c1.sinh()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
}
|
||||||
|
|
||||||
|
fn test_complex_cosh() {
|
||||||
|
// Tests were also verified on Wolfram Alpha
|
||||||
|
mut c1 := math.complex(5,7)
|
||||||
|
mut c2 := math.complex(55.947047,48.750515)
|
||||||
|
mut result := c1.cosh()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = math.complex(-3,4)
|
||||||
|
c2 = math.complex(-6.580663,7.581553)
|
||||||
|
result = c1.cosh()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = math.complex(-1,-2)
|
||||||
|
c2 = math.complex(-0.642148,1.068607)
|
||||||
|
result = c1.cosh()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
}
|
||||||
|
|
||||||
|
fn test_complex_tanh() {
|
||||||
|
// Tests were also verified on Wolfram Alpha
|
||||||
|
mut c1 := math.complex(5,7)
|
||||||
|
mut c2 := math.complex(0.999988,0.000090)
|
||||||
|
mut result := c1.tanh()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = math.complex(-3,4)
|
||||||
|
c2 = math.complex(-1.000710,0.004908)
|
||||||
|
result = c1.tanh()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = math.complex(-1,-2)
|
||||||
|
c2 = math.complex(-1.166736,0.243458)
|
||||||
|
result = c1.tanh()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
}
|
Loading…
Reference in New Issue