cmath: added inverse trig operations
parent
da51fea605
commit
7701be2242
|
@ -187,6 +187,53 @@ pub fn (c Complex) tan() Complex {
|
||||||
return c.sin().divide(c.cos())
|
return c.sin().divide(c.cos())
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Complex Arc Sin / Sin Inverse
|
||||||
|
// Based on
|
||||||
|
// http://www.milefoot.com/math/complex/summaryops.htm
|
||||||
|
pub fn (c Complex) asin() Complex {
|
||||||
|
return complex(0,-1).multiply(
|
||||||
|
complex(0,1)
|
||||||
|
.multiply(c)
|
||||||
|
.add(
|
||||||
|
complex(1,0)
|
||||||
|
.subtract(c.pow(2))
|
||||||
|
.root(2)
|
||||||
|
)
|
||||||
|
.ln()
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Complex Arc Consine / Consine Inverse
|
||||||
|
// Based on
|
||||||
|
// http://www.milefoot.com/math/complex/summaryops.htm
|
||||||
|
pub fn (c Complex) acos() Complex {
|
||||||
|
return complex(0,-1).multiply(
|
||||||
|
c.add(
|
||||||
|
complex(0,1)
|
||||||
|
.multiply(
|
||||||
|
complex(1,0)
|
||||||
|
.subtract(c.pow(2))
|
||||||
|
.root(2)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
.ln()
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Complex Arc Tangent / Tangent Inverse
|
||||||
|
// Based on
|
||||||
|
// http://www.milefoot.com/math/complex/summaryops.htm
|
||||||
|
pub fn (c Complex) atan() Complex {
|
||||||
|
i := complex(0,1)
|
||||||
|
return complex(0,1.0/2).multiply(
|
||||||
|
i.add(c)
|
||||||
|
.divide(
|
||||||
|
i.subtract(c)
|
||||||
|
)
|
||||||
|
.ln()
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
// Complex Hyperbolic Sin
|
// Complex Hyperbolic Sin
|
||||||
// Based on
|
// Based on
|
||||||
// http://www.milefoot.com/math/complex/functionsofi.htm
|
// http://www.milefoot.com/math/complex/functionsofi.htm
|
||||||
|
@ -214,6 +261,72 @@ pub fn (c Complex) tanh() Complex {
|
||||||
return c.sinh().divide(c.cosh())
|
return c.sinh().divide(c.cosh())
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Complex Hyperbolic Arc Sin / Sin Inverse
|
||||||
|
// Based on
|
||||||
|
// http://www.suitcaseofdreams.net/Inverse__Hyperbolic_Functions.htm
|
||||||
|
pub fn (c Complex) asinh() Complex {
|
||||||
|
return c.add(
|
||||||
|
c.pow(2)
|
||||||
|
.add(complex(1,0))
|
||||||
|
.root(2)
|
||||||
|
).ln()
|
||||||
|
}
|
||||||
|
|
||||||
|
// Complex Hyperbolic Arc Consine / Consine Inverse
|
||||||
|
// Based on
|
||||||
|
// http://www.suitcaseofdreams.net/Inverse__Hyperbolic_Functions.htm
|
||||||
|
pub fn (c Complex) acosh() Complex {
|
||||||
|
if(c.re > 1) {
|
||||||
|
return c.add(
|
||||||
|
c.pow(2)
|
||||||
|
.subtract(complex(1,0))
|
||||||
|
.root(2)
|
||||||
|
).ln()
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
one := complex(1,0)
|
||||||
|
return c.add(
|
||||||
|
c.add(one)
|
||||||
|
.root(2)
|
||||||
|
.multiply(
|
||||||
|
c.subtract(one)
|
||||||
|
.root(2)
|
||||||
|
)
|
||||||
|
).ln()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Complex Hyperbolic Arc Tangent / Tangent Inverse
|
||||||
|
// Based on
|
||||||
|
// http://www.suitcaseofdreams.net/Inverse__Hyperbolic_Functions.htm
|
||||||
|
pub fn (c Complex) atanh() Complex {
|
||||||
|
if(c.re < 1) {
|
||||||
|
one := complex(1,0)
|
||||||
|
return complex(1.0/2,0).multiply(
|
||||||
|
one
|
||||||
|
.add(c)
|
||||||
|
.divide(
|
||||||
|
one
|
||||||
|
.subtract(c)
|
||||||
|
)
|
||||||
|
.ln()
|
||||||
|
)
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
one := complex(1,0)
|
||||||
|
return complex(1.0/2,0).multiply(
|
||||||
|
one
|
||||||
|
.add(c)
|
||||||
|
.ln()
|
||||||
|
.subtract(
|
||||||
|
one
|
||||||
|
.subtract(c)
|
||||||
|
.ln()
|
||||||
|
)
|
||||||
|
)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// Complex Equals
|
// Complex Equals
|
||||||
pub fn (c1 Complex) equals(c2 Complex) bool {
|
pub fn (c1 Complex) equals(c2 Complex) bool {
|
||||||
return (c1.re == c2.re) && (c1.im == c2.im)
|
return (c1.re == c2.re) && (c1.im == c2.im)
|
||||||
|
|
|
@ -311,6 +311,63 @@ fn test_complex_tan() {
|
||||||
assert result.str().eq(c2.str())
|
assert result.str().eq(c2.str())
|
||||||
}
|
}
|
||||||
|
|
||||||
|
fn test_complex_asin() {
|
||||||
|
// Tests were also verified on Wolfram Alpha
|
||||||
|
mut c1 := cmath.complex(5,7)
|
||||||
|
mut c2 := cmath.complex(0.617064,2.846289)
|
||||||
|
mut result := c1.asin()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = cmath.complex(-3,4)
|
||||||
|
c2 = cmath.complex(-0.633984,2.305509)
|
||||||
|
result = c1.asin()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = cmath.complex(-1,-2)
|
||||||
|
c2 = cmath.complex(-0.427079,-1.528571)
|
||||||
|
result = c1.asin()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
}
|
||||||
|
|
||||||
|
fn test_complex_acos() {
|
||||||
|
// Tests were also verified on Wolfram Alpha
|
||||||
|
mut c1 := cmath.complex(5,7)
|
||||||
|
mut c2 := cmath.complex(0.953732,-2.846289)
|
||||||
|
mut result := c1.acos()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = cmath.complex(-3,4)
|
||||||
|
c2 = cmath.complex(2.204780,-2.305509)
|
||||||
|
result = c1.acos()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = cmath.complex(-1,-2)
|
||||||
|
c2 = cmath.complex(1.997875,1.528571)
|
||||||
|
result = c1.acos()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
}
|
||||||
|
|
||||||
|
fn test_complex_atan() {
|
||||||
|
// Tests were also verified on Wolfram Alpha
|
||||||
|
mut c1 := cmath.complex(5,7)
|
||||||
|
mut c2 := cmath.complex(1.502727,0.094441)
|
||||||
|
mut result := c1.atan()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = cmath.complex(-3,4)
|
||||||
|
c2 = cmath.complex(-1.448307,0.158997)
|
||||||
|
result = c1.atan()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = cmath.complex(-1,-2)
|
||||||
|
c2 = cmath.complex(-1.338973,-0.402359)
|
||||||
|
result = c1.atan()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
}
|
||||||
|
|
||||||
fn test_complex_sinh() {
|
fn test_complex_sinh() {
|
||||||
// Tests were also verified on Wolfram Alpha
|
// Tests were also verified on Wolfram Alpha
|
||||||
mut c1 := cmath.complex(5,7)
|
mut c1 := cmath.complex(5,7)
|
||||||
|
@ -368,4 +425,59 @@ fn test_complex_tanh() {
|
||||||
assert result.str().eq(c2.str())
|
assert result.str().eq(c2.str())
|
||||||
}
|
}
|
||||||
|
|
||||||
|
fn test_complex_asinh() {
|
||||||
|
// Tests were also verified on Wolfram Alpha
|
||||||
|
mut c1 := cmath.complex(5,7)
|
||||||
|
mut c2 := cmath.complex(2.844098,0.947341)
|
||||||
|
mut result := c1.asinh()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = cmath.complex(-3,4)
|
||||||
|
c2 = cmath.complex(-2.299914,0.917617)
|
||||||
|
result = c1.asinh()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = cmath.complex(-1,-2)
|
||||||
|
c2 = cmath.complex(-1.469352,-1.063440)
|
||||||
|
result = c1.asinh()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
}
|
||||||
|
|
||||||
|
fn test_complex_acosh() {
|
||||||
|
// Tests were also verified on Wolfram Alpha
|
||||||
|
mut c1 := cmath.complex(5,7)
|
||||||
|
mut c2 := cmath.complex(2.846289,0.953732)
|
||||||
|
mut result := c1.acosh()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = cmath.complex(-3,4)
|
||||||
|
c2 = cmath.complex(2.305509,2.204780)
|
||||||
|
result = c1.acosh()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = cmath.complex(-1,-2)
|
||||||
|
c2 = cmath.complex(1.528571,-1.997875)
|
||||||
|
result = c1.acosh()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
}
|
||||||
|
|
||||||
|
fn test_complex_atanh() {
|
||||||
|
// Tests were also verified on Wolfram Alpha
|
||||||
|
mut c1 := cmath.complex(5,7)
|
||||||
|
mut c2 := cmath.complex(0.067066,1.476056)
|
||||||
|
mut result := c1.atanh()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = cmath.complex(-3,4)
|
||||||
|
c2 = cmath.complex(-0.117501,1.409921)
|
||||||
|
result = c1.atanh()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
c1 = cmath.complex(-1,-2)
|
||||||
|
c2 = cmath.complex(-0.173287,-1.178097)
|
||||||
|
result = c1.atanh()
|
||||||
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||||
|
assert result.str().eq(c2.str())
|
||||||
|
}
|
Loading…
Reference in New Issue