math: extract platform specific wrapper functions to math.c.v and math.js.v
parent
2f52106253
commit
7d32476841
|
@ -0,0 +1,256 @@
|
|||
// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
|
||||
// Use of this source code is governed by an MIT license
|
||||
// that can be found in the LICENSE file.
|
||||
module math
|
||||
|
||||
#include <math.h>
|
||||
|
||||
fn C.acos(x f64) f64
|
||||
fn C.asin(x f64) f64
|
||||
fn C.atan(x f64) f64
|
||||
fn C.atan2(y f64, x f64) f64
|
||||
fn C.cbrt(x f64) f64
|
||||
fn C.ceil(x f64) f64
|
||||
fn C.cos(x f64) f64
|
||||
fn C.cosf(x f32) f32
|
||||
fn C.cosh(x f64) f64
|
||||
fn C.erf(x f64) f64
|
||||
fn C.erfc(x f64) f64
|
||||
fn C.exp(x f64) f64
|
||||
fn C.exp2(x f64) f64
|
||||
fn C.fabs(x f64) f64
|
||||
fn C.floor(x f64) f64
|
||||
fn C.fmod(x f64, y f64) f64
|
||||
fn C.hypot(x f64, y f64) f64
|
||||
fn C.log(x f64) f64
|
||||
fn C.log2(x f64) f64
|
||||
fn C.log10(x f64) f64
|
||||
fn C.lgamma(x f64) f64
|
||||
fn C.pow(x f64, y f64) f64
|
||||
fn C.powf(x f32, y f32) f32
|
||||
fn C.round(x f64) f64
|
||||
fn C.sin(x f64) f64
|
||||
fn C.sinf(x f32) f32
|
||||
fn C.sinh(x f64) f64
|
||||
fn C.sqrt(x f64) f64
|
||||
fn C.sqrtf(x f32) f32
|
||||
fn C.tgamma(x f64) f64
|
||||
fn C.tan(x f64) f64
|
||||
fn C.tanf(x f32) f32
|
||||
fn C.tanh(x f64) f64
|
||||
fn C.trunc(x f64) f64
|
||||
|
||||
// NOTE
|
||||
// When adding a new function, please make sure it's in the right place.
|
||||
// All functions are sorted alphabetically.
|
||||
|
||||
// Returns the absolute value.
|
||||
[inline]
|
||||
pub fn abs(a f64) f64 {
|
||||
return C.fabs(a)
|
||||
}
|
||||
|
||||
// acos calculates inverse cosine (arccosine).
|
||||
[inline]
|
||||
pub fn acos(a f64) f64 {
|
||||
return C.acos(a)
|
||||
}
|
||||
|
||||
// asin calculates inverse sine (arcsine).
|
||||
[inline]
|
||||
pub fn asin(a f64) f64 {
|
||||
return C.asin(a)
|
||||
}
|
||||
|
||||
// atan calculates inverse tangent (arctangent).
|
||||
[inline]
|
||||
pub fn atan(a f64) f64 {
|
||||
return C.atan(a)
|
||||
}
|
||||
|
||||
// atan2 calculates inverse tangent with two arguments, returns the angle between the X axis and the point.
|
||||
[inline]
|
||||
pub fn atan2(a, b f64) f64 {
|
||||
return C.atan2(a, b)
|
||||
}
|
||||
|
||||
// cbrt calculates cubic root.
|
||||
[inline]
|
||||
pub fn cbrt(a f64) f64 {
|
||||
return C.cbrt(a)
|
||||
}
|
||||
|
||||
// ceil returns the nearest f64 greater or equal to the provided value.
|
||||
[inline]
|
||||
pub fn ceil(a f64) f64 {
|
||||
return C.ceil(a)
|
||||
}
|
||||
|
||||
// cos calculates cosine.
|
||||
[inline]
|
||||
pub fn cos(a f64) f64 {
|
||||
return C.cos(a)
|
||||
}
|
||||
|
||||
// cosf calculates cosine. (float32)
|
||||
[inline]
|
||||
pub fn cosf(a f32) f32 {
|
||||
return C.cosf(a)
|
||||
}
|
||||
|
||||
// cosh calculates hyperbolic cosine.
|
||||
[inline]
|
||||
pub fn cosh(a f64) f64 {
|
||||
return C.cosh(a)
|
||||
}
|
||||
|
||||
// exp calculates exponent of the number (math.pow(math.E, a)).
|
||||
[inline]
|
||||
pub fn exp(a f64) f64 {
|
||||
return C.exp(a)
|
||||
}
|
||||
|
||||
// erf computes the error function value
|
||||
[inline]
|
||||
pub fn erf(a f64) f64 {
|
||||
return C.erf(a)
|
||||
}
|
||||
|
||||
// erfc computes the complementary error function value
|
||||
[inline]
|
||||
pub fn erfc(a f64) f64 {
|
||||
return C.erfc(a)
|
||||
}
|
||||
|
||||
// exp2 returns the base-2 exponential function of a (math.pow(2, a)).
|
||||
[inline]
|
||||
pub fn exp2(a f64) f64 {
|
||||
return C.exp2(a)
|
||||
}
|
||||
|
||||
// floor returns the nearest f64 lower or equal of the provided value.
|
||||
[inline]
|
||||
pub fn floor(a f64) f64 {
|
||||
return C.floor(a)
|
||||
}
|
||||
|
||||
// fmod returns the floating-point remainder of number / denom (rounded towards zero):
|
||||
[inline]
|
||||
pub fn fmod(a, b f64) f64 {
|
||||
return C.fmod(a, b)
|
||||
}
|
||||
|
||||
// gamma computes the gamma function value
|
||||
[inline]
|
||||
pub fn gamma(a f64) f64 {
|
||||
return C.tgamma(a)
|
||||
}
|
||||
|
||||
// Returns hypotenuse of a right triangle.
|
||||
[inline]
|
||||
pub fn hypot(a, b f64) f64 {
|
||||
return C.hypot(a, b)
|
||||
}
|
||||
|
||||
// log calculates natural (base-e) logarithm of the provided value.
|
||||
[inline]
|
||||
pub fn log(a f64) f64 {
|
||||
return C.log(a)
|
||||
}
|
||||
|
||||
// log2 calculates base-2 logarithm of the provided value.
|
||||
[inline]
|
||||
pub fn log2(a f64) f64 {
|
||||
return C.log2(a)
|
||||
}
|
||||
|
||||
// log10 calculates the common (base-10) logarithm of the provided value.
|
||||
[inline]
|
||||
pub fn log10(a f64) f64 {
|
||||
return C.log10(a)
|
||||
}
|
||||
|
||||
// log_gamma computes the log-gamma function value
|
||||
[inline]
|
||||
pub fn log_gamma(a f64) f64 {
|
||||
return C.lgamma(a)
|
||||
}
|
||||
|
||||
// log_n calculates base-N logarithm of the provided value.
|
||||
[inline]
|
||||
pub fn log_n(a, b f64) f64 {
|
||||
return C.log(a) / C.log(b)
|
||||
}
|
||||
|
||||
// pow returns base raised to the provided power.
|
||||
[inline]
|
||||
pub fn pow(a, b f64) f64 {
|
||||
return C.pow(a, b)
|
||||
}
|
||||
|
||||
// powf returns base raised to the provided power. (float32)
|
||||
[inline]
|
||||
pub fn powf(a, b f32) f32 {
|
||||
return C.powf(a, b)
|
||||
}
|
||||
|
||||
// round returns the integer nearest to the provided value.
|
||||
[inline]
|
||||
pub fn round(f f64) f64 {
|
||||
return C.round(f)
|
||||
}
|
||||
|
||||
// sin calculates sine.
|
||||
[inline]
|
||||
pub fn sin(a f64) f64 {
|
||||
return C.sin(a)
|
||||
}
|
||||
|
||||
// sinf calculates sine. (float32)
|
||||
[inline]
|
||||
pub fn sinf(a f32) f32 {
|
||||
return C.sinf(a)
|
||||
}
|
||||
|
||||
// sinh calculates hyperbolic sine.
|
||||
[inline]
|
||||
pub fn sinh(a f64) f64 {
|
||||
return C.sinh(a)
|
||||
}
|
||||
|
||||
// sqrt calculates square-root of the provided value.
|
||||
[inline]
|
||||
pub fn sqrt(a f64) f64 {
|
||||
return C.sqrt(a)
|
||||
}
|
||||
|
||||
// sqrtf calculates square-root of the provided value. (float32)
|
||||
[inline]
|
||||
pub fn sqrtf(a f32) f32 {
|
||||
return C.sqrtf(a)
|
||||
}
|
||||
|
||||
// tan calculates tangent.
|
||||
[inline]
|
||||
pub fn tan(a f64) f64 {
|
||||
return C.tan(a)
|
||||
}
|
||||
|
||||
// tanf calculates tangent. (float32)
|
||||
[inline]
|
||||
pub fn tanf(a f32) f32 {
|
||||
return C.tanf(a)
|
||||
}
|
||||
|
||||
// tanh calculates hyperbolic tangent.
|
||||
[inline]
|
||||
pub fn tanh(a f64) f64 {
|
||||
return C.tanh(a)
|
||||
}
|
||||
|
||||
// trunc rounds a toward zero, returning the nearest integral value that is not
|
||||
// larger in magnitude than a.
|
||||
[inline]
|
||||
pub fn trunc(a f64) f64 {
|
||||
return C.trunc(a)
|
||||
}
|
|
@ -0,0 +1,252 @@
|
|||
// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
|
||||
// Use of this source code is governed by an MIT license
|
||||
// that can be found in the LICENSE file.
|
||||
module math
|
||||
|
||||
// TODO : The commented out functions need either a native V implementation, a
|
||||
// JS specific implementation, or use some other JS math library, such as
|
||||
// https://github.com/josdejong/mathjs
|
||||
fn JS.Math.abs(x f64) f64 // Replaces C.fabs
|
||||
fn JS.Math.acos(x f64) f64
|
||||
fn JS.Math.asin(x f64) f64
|
||||
fn JS.Math.atan(x f64) f64
|
||||
fn JS.Math.atan2(y f64, x f64) f64
|
||||
fn JS.Math.cbrt(x f64) f64
|
||||
fn JS.Math.ceil(x f64) f64
|
||||
fn JS.Math.cos(x f64) f64
|
||||
fn JS.Math.cosh(x f64) f64
|
||||
//fn JS.Math.erf(x f64) f64 // Not in standard JS Math object
|
||||
//fn JS.Math.erfc(x f64) f64 // Not in standard JS Math object
|
||||
fn JS.Math.exp(x f64) f64
|
||||
//fn JS.Math.exp2(x f64) f64 // Not in standard JS Math object
|
||||
fn JS.Math.floor(x f64) f64
|
||||
//fn JS.Math.fmod(x f64, y f64) f64 // Not in standard JS Math object
|
||||
//fn JS.Math.hypot(x f64, y f64) f64 // Not in standard JS Math object
|
||||
fn JS.Math.log(x f64) f64
|
||||
//fn JS.Math.log2(x f64) f64 // Not in standard JS Math object
|
||||
//fn JS.Math.log10(x f64) f64 // Not in standard JS Math object
|
||||
//fn JS.Math.lgamma(x f64) f64 // Not in standard JS Math object
|
||||
fn JS.Math.pow(x f64, y f64) f64
|
||||
fn JS.Math.round(x f64) f64
|
||||
fn JS.Math.sin(x f64) f64
|
||||
fn JS.Math.sinh(x f64) f64
|
||||
fn JS.Math.sqrt(x f64) f64
|
||||
//fn JS.Math.tgamma(x f64) f64 // Not in standard JS Math object
|
||||
fn JS.Math.tan(x f64) f64
|
||||
fn JS.Math.tanh(x f64) f64
|
||||
fn JS.Math.trunc(x f64) f64
|
||||
|
||||
// NOTE
|
||||
// When adding a new function, please make sure it's in the right place.
|
||||
// All functions are sorted alphabetically.
|
||||
|
||||
// Returns the absolute value.
|
||||
[inline]
|
||||
pub fn abs(a f64) f64 {
|
||||
return JS.Math.abs(a)
|
||||
}
|
||||
|
||||
// acos calculates inverse cosine (arccosine).
|
||||
[inline]
|
||||
pub fn acos(a f64) f64 {
|
||||
return JS.Math.acos(a)
|
||||
}
|
||||
|
||||
// asin calculates inverse sine (arcsine).
|
||||
[inline]
|
||||
pub fn asin(a f64) f64 {
|
||||
return JS.Math.asin(a)
|
||||
}
|
||||
|
||||
// atan calculates inverse tangent (arctangent).
|
||||
[inline]
|
||||
pub fn atan(a f64) f64 {
|
||||
return JS.Math.atan(a)
|
||||
}
|
||||
|
||||
// atan2 calculates inverse tangent with two arguments, returns the angle between the X axis and the point.
|
||||
[inline]
|
||||
pub fn atan2(a, b f64) f64 {
|
||||
return JS.Math.atan2(a, b)
|
||||
}
|
||||
|
||||
// cbrt calculates cubic root.
|
||||
[inline]
|
||||
pub fn cbrt(a f64) f64 {
|
||||
return JS.Math.cbrt(a)
|
||||
}
|
||||
|
||||
// ceil returns the nearest f64 greater or equal to the provided value.
|
||||
[inline]
|
||||
pub fn ceil(a f64) f64 {
|
||||
return JS.Math.ceil(a)
|
||||
}
|
||||
|
||||
// cos calculates cosine.
|
||||
[inline]
|
||||
pub fn cos(a f64) f64 {
|
||||
return JS.Math.cos(a)
|
||||
}
|
||||
|
||||
// cosf calculates cosine. (float32). This doesn't exist in JS
|
||||
[inline]
|
||||
pub fn cosf(a f32) f32 {
|
||||
return f32(JS.Math.cos(a))
|
||||
}
|
||||
|
||||
// cosh calculates hyperbolic cosine.
|
||||
[inline]
|
||||
pub fn cosh(a f64) f64 {
|
||||
return JS.Math.cosh(a)
|
||||
}
|
||||
|
||||
// exp calculates exponent of the number (math.pow(math.E, a)).
|
||||
[inline]
|
||||
pub fn exp(a f64) f64 {
|
||||
return JS.Math.exp(a)
|
||||
}
|
||||
|
||||
// erf computes the error function value
|
||||
[inline]
|
||||
pub fn erf(a f64) f64 {
|
||||
return JS.Math.erf(a)
|
||||
}
|
||||
|
||||
// erfc computes the complementary error function value
|
||||
[inline]
|
||||
pub fn erfc(a f64) f64 {
|
||||
return JS.Math.erfc(a)
|
||||
}
|
||||
|
||||
// exp2 returns the base-2 exponential function of a (math.pow(2, a)).
|
||||
[inline]
|
||||
pub fn exp2(a f64) f64 {
|
||||
return JS.Math.exp2(a)
|
||||
}
|
||||
|
||||
// floor returns the nearest f64 lower or equal of the provided value.
|
||||
[inline]
|
||||
pub fn floor(a f64) f64 {
|
||||
return JS.Math.floor(a)
|
||||
}
|
||||
|
||||
// fmod returns the floating-point remainder of number / denom (rounded towards zero):
|
||||
[inline]
|
||||
pub fn fmod(a, b f64) f64 {
|
||||
return JS.Math.fmod(a, b)
|
||||
}
|
||||
|
||||
// gamma computes the gamma function value
|
||||
[inline]
|
||||
pub fn gamma(a f64) f64 {
|
||||
return JS.Math.tgamma(a)
|
||||
}
|
||||
|
||||
// Returns hypotenuse of a right triangle.
|
||||
[inline]
|
||||
pub fn hypot(a, b f64) f64 {
|
||||
return JS.Math.hypot(a, b)
|
||||
}
|
||||
|
||||
// log calculates natural (base-e) logarithm of the provided value.
|
||||
[inline]
|
||||
pub fn log(a f64) f64 {
|
||||
return JS.Math.log(a)
|
||||
}
|
||||
|
||||
// log2 calculates base-2 logarithm of the provided value.
|
||||
[inline]
|
||||
pub fn log2(a f64) f64 {
|
||||
return JS.Math.log2(a)
|
||||
}
|
||||
|
||||
// log10 calculates the common (base-10) logarithm of the provided value.
|
||||
[inline]
|
||||
pub fn log10(a f64) f64 {
|
||||
return JS.Math.log10(a)
|
||||
}
|
||||
|
||||
// log_gamma computes the log-gamma function value
|
||||
[inline]
|
||||
pub fn log_gamma(a f64) f64 {
|
||||
return JS.Math.lgamma(a)
|
||||
}
|
||||
|
||||
// log_n calculates base-N logarithm of the provided value.
|
||||
[inline]
|
||||
pub fn log_n(a, b f64) f64 {
|
||||
return JS.Math.log(a) / JS.Math.log(b)
|
||||
}
|
||||
|
||||
// pow returns base raised to the provided power.
|
||||
[inline]
|
||||
pub fn pow(a, b f64) f64 {
|
||||
return JS.Math.pow(a, b)
|
||||
}
|
||||
|
||||
// powf returns base raised to the provided power. (float32)
|
||||
[inline]
|
||||
pub fn powf(a, b f32) f32 {
|
||||
return f32(JS.Math.pow(a, b))
|
||||
}
|
||||
|
||||
// round returns the integer nearest to the provided value.
|
||||
[inline]
|
||||
pub fn round(f f64) f64 {
|
||||
return JS.Math.round(f)
|
||||
}
|
||||
|
||||
// sin calculates sine.
|
||||
[inline]
|
||||
pub fn sin(a f64) f64 {
|
||||
return JS.Math.sin(a)
|
||||
}
|
||||
|
||||
// sinf calculates sine. (float32)
|
||||
[inline]
|
||||
pub fn sinf(a f32) f32 {
|
||||
return f32(JS.Math.sin(a))
|
||||
}
|
||||
|
||||
// sinh calculates hyperbolic sine.
|
||||
[inline]
|
||||
pub fn sinh(a f64) f64 {
|
||||
return JS.Math.sinh(a)
|
||||
}
|
||||
|
||||
// sqrt calculates square-root of the provided value.
|
||||
[inline]
|
||||
pub fn sqrt(a f64) f64 {
|
||||
return JS.Math.sqrt(a)
|
||||
}
|
||||
|
||||
// sqrtf calculates square-root of the provided value. (float32)
|
||||
[inline]
|
||||
pub fn sqrtf(a f32) f32 {
|
||||
return f32(JS.Math.sqrt(a))
|
||||
}
|
||||
|
||||
// tan calculates tangent.
|
||||
[inline]
|
||||
pub fn tan(a f64) f64 {
|
||||
return JS.Math.tan(a)
|
||||
}
|
||||
|
||||
// tanf calculates tangent. (float32)
|
||||
[inline]
|
||||
pub fn tanf(a f32) f32 {
|
||||
return f32(JS.Math.tan(a))
|
||||
}
|
||||
|
||||
// tanh calculates hyperbolic tangent.
|
||||
[inline]
|
||||
pub fn tanh(a f64) f64 {
|
||||
return JS.Math.tanh(a)
|
||||
}
|
||||
|
||||
// trunc rounds a toward zero, returning the nearest integral value that is not
|
||||
// larger in magnitude than a.
|
||||
[inline]
|
||||
pub fn trunc(a f64) f64 {
|
||||
return JS.Math.trunc(a)
|
||||
}
|
373
vlib/math/math.v
373
vlib/math/math.v
|
@ -3,299 +3,15 @@
|
|||
// that can be found in the LICENSE file.
|
||||
module math
|
||||
|
||||
#include <math.h>
|
||||
|
||||
fn C.acos(x f64) f64
|
||||
fn C.asin(x f64) f64
|
||||
fn C.atan(x f64) f64
|
||||
fn C.atan2(y f64, x f64) f64
|
||||
fn C.cbrt(x f64) f64
|
||||
fn C.ceil(x f64) f64
|
||||
fn C.cos(x f64) f64
|
||||
fn C.cosf(x f32) f32
|
||||
fn C.cosh(x f64) f64
|
||||
fn C.erf(x f64) f64
|
||||
fn C.erfc(x f64) f64
|
||||
fn C.exp(x f64) f64
|
||||
fn C.exp2(x f64) f64
|
||||
fn C.fabs(x f64) f64
|
||||
fn C.floor(x f64) f64
|
||||
fn C.fmod(x f64, y f64) f64
|
||||
fn C.hypot(x f64, y f64) f64
|
||||
fn C.log(x f64) f64
|
||||
fn C.log2(x f64) f64
|
||||
fn C.log10(x f64) f64
|
||||
fn C.lgamma(x f64) f64
|
||||
fn C.pow(x f64, y f64) f64
|
||||
fn C.powf(x f32, y f32) f32
|
||||
fn C.round(x f64) f64
|
||||
fn C.sin(x f64) f64
|
||||
fn C.sinf(x f32) f32
|
||||
fn C.sinh(x f64) f64
|
||||
fn C.sqrt(x f64) f64
|
||||
fn C.sqrtf(x f32) f32
|
||||
fn C.tgamma(x f64) f64
|
||||
fn C.tan(x f64) f64
|
||||
fn C.tanf(x f32) f32
|
||||
fn C.tanh(x f64) f64
|
||||
fn C.trunc(x f64) f64
|
||||
|
||||
// NOTE
|
||||
// When adding a new function, please make sure it's in the right place.
|
||||
// All functions are sorted alphabetically.
|
||||
// All functions are sorted alphabetically, separated by wrapped functions vs
|
||||
// backend specific functions.
|
||||
// If using System/Backend dependent functions, put them in their respective
|
||||
// .c.v or .js.v or other files
|
||||
|
||||
// Returns the absolute value.
|
||||
pub fn abs(a f64) f64 {
|
||||
return C.fabs(a)
|
||||
}
|
||||
|
||||
// acos calculates inverse cosine (arccosine).
|
||||
pub fn acos(a f64) f64 {
|
||||
return C.acos(a)
|
||||
}
|
||||
|
||||
// asin calculates inverse sine (arcsine).
|
||||
pub fn asin(a f64) f64 {
|
||||
return C.asin(a)
|
||||
}
|
||||
|
||||
// atan calculates inverse tangent (arctangent).
|
||||
pub fn atan(a f64) f64 {
|
||||
return C.atan(a)
|
||||
}
|
||||
|
||||
// atan2 calculates inverse tangent with two arguments, returns the angle between the X axis and the point.
|
||||
pub fn atan2(a, b f64) f64 {
|
||||
return C.atan2(a, b)
|
||||
}
|
||||
|
||||
// cbrt calculates cubic root.
|
||||
pub fn cbrt(a f64) f64 {
|
||||
return C.cbrt(a)
|
||||
}
|
||||
|
||||
// ceil returns the nearest f64 greater or equal to the provided value.
|
||||
pub fn ceil(a f64) f64 {
|
||||
return C.ceil(a)
|
||||
}
|
||||
|
||||
// cos calculates cosine.
|
||||
pub fn cos(a f64) f64 {
|
||||
return C.cos(a)
|
||||
}
|
||||
|
||||
// cosf calculates cosine. (float32)
|
||||
pub fn cosf(a f32) f32 {
|
||||
return C.cosf(a)
|
||||
}
|
||||
|
||||
// cosh calculates hyperbolic cosine.
|
||||
pub fn cosh(a f64) f64 {
|
||||
return C.cosh(a)
|
||||
}
|
||||
|
||||
// degrees convert from degrees to radians.
|
||||
pub fn degrees(radians f64) f64 {
|
||||
return radians * (180.0 / pi)
|
||||
}
|
||||
|
||||
// exp calculates exponent of the number (math.pow(math.E, a)).
|
||||
pub fn exp(a f64) f64 {
|
||||
return C.exp(a)
|
||||
}
|
||||
|
||||
// digits returns an array of the digits of n in the given base.
|
||||
pub fn digits(_n, base int) []int {
|
||||
if base < 2 {
|
||||
panic('digits: Cannot find digits of n with base $base')
|
||||
}
|
||||
mut n := _n
|
||||
mut sign := 1
|
||||
if n < 0 {
|
||||
sign = -1
|
||||
n = -n
|
||||
}
|
||||
mut res := []int{}
|
||||
for n != 0 {
|
||||
res << (n % base) * sign
|
||||
n /= base
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
// erf computes the error function value
|
||||
pub fn erf(a f64) f64 {
|
||||
return C.erf(a)
|
||||
}
|
||||
|
||||
// erfc computes the complementary error function value
|
||||
pub fn erfc(a f64) f64 {
|
||||
return C.erfc(a)
|
||||
}
|
||||
|
||||
// exp2 returns the base-2 exponential function of a (math.pow(2, a)).
|
||||
pub fn exp2(a f64) f64 {
|
||||
return C.exp2(a)
|
||||
}
|
||||
|
||||
// floor returns the nearest f64 lower or equal of the provided value.
|
||||
pub fn floor(a f64) f64 {
|
||||
return C.floor(a)
|
||||
}
|
||||
|
||||
// fmod returns the floating-point remainder of number / denom (rounded towards zero):
|
||||
pub fn fmod(a, b f64) f64 {
|
||||
return C.fmod(a, b)
|
||||
}
|
||||
|
||||
// gamma computes the gamma function value
|
||||
pub fn gamma(a f64) f64 {
|
||||
return C.tgamma(a)
|
||||
}
|
||||
|
||||
// gcd calculates greatest common (positive) divisor (or zero if a and b are both zero).
|
||||
pub fn gcd(a_, b_ i64) i64 {
|
||||
mut a := a_
|
||||
mut b := b_
|
||||
if a < 0 {
|
||||
a = -a
|
||||
}
|
||||
if b < 0 {
|
||||
b = -b
|
||||
}
|
||||
for b != 0 {
|
||||
a %= b
|
||||
if a == 0 {
|
||||
return b
|
||||
}
|
||||
b %= a
|
||||
}
|
||||
return a
|
||||
}
|
||||
|
||||
// Returns hypotenuse of a right triangle.
|
||||
pub fn hypot(a, b f64) f64 {
|
||||
return C.hypot(a, b)
|
||||
}
|
||||
|
||||
// lcm calculates least common (non-negative) multiple.
|
||||
pub fn lcm(a, b i64) i64 {
|
||||
if a == 0 {
|
||||
return a
|
||||
}
|
||||
res := a * (b / gcd(b, a))
|
||||
if res < 0 {
|
||||
return -res
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
// log calculates natural (base-e) logarithm of the provided value.
|
||||
pub fn log(a f64) f64 {
|
||||
return C.log(a)
|
||||
}
|
||||
|
||||
// log2 calculates base-2 logarithm of the provided value.
|
||||
pub fn log2(a f64) f64 {
|
||||
return C.log2(a)
|
||||
}
|
||||
|
||||
// log10 calculates the common (base-10) logarithm of the provided value.
|
||||
pub fn log10(a f64) f64 {
|
||||
return C.log10(a)
|
||||
}
|
||||
|
||||
// log_gamma computes the log-gamma function value
|
||||
pub fn log_gamma(a f64) f64 {
|
||||
return C.lgamma(a)
|
||||
}
|
||||
|
||||
// log_n calculates base-N logarithm of the provided value.
|
||||
pub fn log_n(a, b f64) f64 {
|
||||
return C.log(a) / C.log(b)
|
||||
}
|
||||
|
||||
// max returns the maximum value of the two provided.
|
||||
pub fn max(a, b f64) f64 {
|
||||
if a > b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
||||
|
||||
// min returns the minimum value of the two provided.
|
||||
pub fn min(a, b f64) f64 {
|
||||
if a < b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
||||
|
||||
// pow returns base raised to the provided power.
|
||||
pub fn pow(a, b f64) f64 {
|
||||
return C.pow(a, b)
|
||||
}
|
||||
|
||||
// powf returns base raised to the provided power. (float32)
|
||||
pub fn powf(a, b f32) f32 {
|
||||
return C.powf(a, b)
|
||||
}
|
||||
|
||||
// radians convert from radians to degrees.
|
||||
pub fn radians(degrees f64) f64 {
|
||||
return degrees * (pi / 180.0)
|
||||
}
|
||||
|
||||
// round returns the integer nearest to the provided value.
|
||||
pub fn round(f f64) f64 {
|
||||
return C.round(f)
|
||||
}
|
||||
|
||||
// sin calculates sine.
|
||||
pub fn sin(a f64) f64 {
|
||||
return C.sin(a)
|
||||
}
|
||||
|
||||
// sinf calculates sine. (float32)
|
||||
pub fn sinf(a f32) f32 {
|
||||
return C.sinf(a)
|
||||
}
|
||||
|
||||
// sinh calculates hyperbolic sine.
|
||||
pub fn sinh(a f64) f64 {
|
||||
return C.sinh(a)
|
||||
}
|
||||
|
||||
// sqrt calculates square-root of the provided value.
|
||||
pub fn sqrt(a f64) f64 {
|
||||
return C.sqrt(a)
|
||||
}
|
||||
|
||||
// sqrtf calculates square-root of the provided value. (float32)
|
||||
pub fn sqrtf(a f32) f32 {
|
||||
return C.sqrtf(a)
|
||||
}
|
||||
|
||||
// tan calculates tangent.
|
||||
pub fn tan(a f64) f64 {
|
||||
return C.tan(a)
|
||||
}
|
||||
|
||||
// tanf calculates tangent. (float32)
|
||||
pub fn tanf(a f32) f32 {
|
||||
return C.tanf(a)
|
||||
}
|
||||
|
||||
// tanh calculates hyperbolic tangent.
|
||||
pub fn tanh(a f64) f64 {
|
||||
return C.tanh(a)
|
||||
}
|
||||
|
||||
// trunc rounds a toward zero, returning the nearest integral value that is not
|
||||
// larger in magnitude than a.
|
||||
pub fn trunc(a f64) f64 {
|
||||
return C.trunc(a)
|
||||
}
|
||||
// Below are functions that are not wrappers for built-in system functions, but
|
||||
// native V functions. They are still sorted alphabetically
|
||||
|
||||
// Faster approximate sin() and cos() implemented from lolremez
|
||||
pub fn aprox_sin(a f64) f64 {
|
||||
|
@ -327,3 +43,80 @@ pub fn aprox_cos(a f64) f64 {
|
|||
pub fn copysign(x, y f64) f64 {
|
||||
return f64_from_bits((f64_bits(x) & ~sign_mask) | (f64_bits(y) & sign_mask))
|
||||
}
|
||||
|
||||
// degrees convert from degrees to radians.
|
||||
pub fn degrees(radians f64) f64 {
|
||||
return radians * (180.0 / pi)
|
||||
}
|
||||
|
||||
// digits returns an array of the digits of n in the given base.
|
||||
pub fn digits(_n, base int) []int {
|
||||
if base < 2 {
|
||||
panic('digits: Cannot find digits of n with base $base')
|
||||
}
|
||||
mut n := _n
|
||||
mut sign := 1
|
||||
if n < 0 {
|
||||
sign = -1
|
||||
n = -n
|
||||
}
|
||||
mut res := []int{}
|
||||
for n != 0 {
|
||||
res << (n % base) * sign
|
||||
n /= base
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
// gcd calculates greatest common (positive) divisor (or zero if a and b are both zero).
|
||||
pub fn gcd(a_, b_ i64) i64 {
|
||||
mut a := a_
|
||||
mut b := b_
|
||||
if a < 0 {
|
||||
a = -a
|
||||
}
|
||||
if b < 0 {
|
||||
b = -b
|
||||
}
|
||||
for b != 0 {
|
||||
a %= b
|
||||
if a == 0 {
|
||||
return b
|
||||
}
|
||||
b %= a
|
||||
}
|
||||
return a
|
||||
}
|
||||
|
||||
// lcm calculates least common (non-negative) multiple.
|
||||
pub fn lcm(a, b i64) i64 {
|
||||
if a == 0 {
|
||||
return a
|
||||
}
|
||||
res := a * (b / gcd(b, a))
|
||||
if res < 0 {
|
||||
return -res
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
// max returns the maximum value of the two provided.
|
||||
pub fn max(a, b f64) f64 {
|
||||
if a > b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
||||
|
||||
// min returns the minimum value of the two provided.
|
||||
pub fn min(a, b f64) f64 {
|
||||
if a < b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
||||
|
||||
// radians convert from radians to degrees.
|
||||
pub fn radians(degrees f64) f64 {
|
||||
return degrees * (pi / 180.0)
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue