math.big: add bit_len, optimize gcd, add documentation (#13872)

pull/13873/head
Subhomoy Haldar 2022-03-30 18:22:09 +05:30 committed by GitHub
parent 8121a8ada0
commit 7ef7188f4b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 94 additions and 51 deletions

View File

@ -432,3 +432,16 @@ fn test_set_bit() {
a.set_bit(100, false)
assert a == b
}
fn test_bit_len() {
assert big.zero_int.bit_len() == 0
assert big.one_int.bit_len() == 1
assert big.integer_from_u32(0xffffffff).bit_len() == 32
assert big.one_int.lshift(1239).bit_len() == 1240
assert big.integer_from_string('4338476092346017364013796407961305761039463198075691378460917856') or {
panic('Could not read from decimal')
}.bit_len() == 212
}

View File

@ -32,6 +32,7 @@ fn int_signum(value int) int {
return if value < 0 { -1 } else { 1 }
}
// integer_from_int creates a new `big.Integer` from the given int value.
pub fn integer_from_int(value int) Integer {
if value == 0 {
return zero_int
@ -42,6 +43,7 @@ pub fn integer_from_int(value int) Integer {
}
}
// integer_from_u32 creates a new `big.Integer` from the given u32 value.
pub fn integer_from_u32(value u32) Integer {
if value == 0 {
return zero_int
@ -52,6 +54,7 @@ pub fn integer_from_u32(value u32) Integer {
}
}
// integer_from_i64 creates a new `big.Integer` from the given i64 value.
pub fn integer_from_i64(value i64) Integer {
if value == 0 {
return zero_int
@ -76,6 +79,7 @@ pub fn integer_from_i64(value i64) Integer {
}
}
// integer_from_u64 creates a new `big.Integer` from the given u64 value.
pub fn integer_from_u64(value u64) Integer {
if value == 0 {
return zero_int
@ -102,6 +106,8 @@ pub struct IntegerConfig {
signum int = 1
}
// integer_from_bytes creates a new `big.Integer` from the given byte array. By default, positive integers are assumed. If you want a negative integer, use in the following manner:
// `value := big.integer_from_bytes(bytes, signum: -1)`
pub fn integer_from_bytes(input []byte, config IntegerConfig) Integer {
// Thank you to Miccah (@mcastorina) for this implementation and relevant unit tests.
if input.len == 0 {
@ -126,10 +132,13 @@ pub fn integer_from_bytes(input []byte, config IntegerConfig) Integer {
}
}
// integer_from_string creates a new `big.Integer` from the decimal digits specified in the given string.
// For other bases, use `big.integer_from_radix` instead.
pub fn integer_from_string(characters string) ?Integer {
return integer_from_radix(characters, 10)
}
// integer_from_radix creates a new `big.Integer` from the given string and radix.
pub fn integer_from_radix(all_characters string, radix u32) ?Integer {
if radix < 2 || radix > 36 {
return error('Radix must be between 2 and 36 (inclusive)')
@ -238,6 +247,7 @@ fn integer_from_regular_string(characters string, radix u32) Integer {
}
}
// abs returns the absolute value of the integer.
pub fn (integer Integer) abs() Integer {
return if integer.signum == 0 {
zero_int
@ -249,6 +259,7 @@ pub fn (integer Integer) abs() Integer {
}
}
// neg returns the result of negation of the integer.
pub fn (integer Integer) neg() Integer {
return if integer.signum == 0 {
zero_int
@ -337,6 +348,7 @@ pub fn (integer Integer) * (multiplicand Integer) Integer {
}
}
// div_mod returns the quotient and remainder of the integer division.
pub fn (integer Integer) div_mod(divisor Integer) (Integer, Integer) {
// Quick exits
if divisor.signum == 0 {
@ -385,6 +397,7 @@ pub fn (a Integer) % (b Integer) Integer {
return r
}
// pow returns the integer `a` raised to the power of the u32 `exponent`.
pub fn (a Integer) pow(exponent u32) Integer {
if exponent == 0 {
return one_int
@ -405,6 +418,7 @@ pub fn (a Integer) pow(exponent u32) Integer {
return x * y
}
// mod_pow returns the integer `a` raised to the power of the u32 `exponent` modulo the integer `divisor`.
pub fn (a Integer) mod_pow(exponent u32, divisor Integer) Integer {
if exponent == 0 {
return one_int
@ -425,6 +439,7 @@ pub fn (a Integer) mod_pow(exponent u32, divisor Integer) Integer {
return x * y % divisor
}
// big_mod_power returns the integer `a` raised to the power of the integer `exponent` modulo the integer `divisor`.
pub fn (a Integer) big_mod_pow(exponent Integer, divisor Integer) Integer {
if exponent.signum < 0 {
panic('Exponent needs to be non-negative.')
@ -461,10 +476,12 @@ pub fn (a Integer) big_mod_pow(exponent Integer, divisor Integer) Integer {
return x * y % divisor
}
// inc returns the integer `a` incremented by 1.
pub fn (mut a Integer) inc() {
a = a + one_int
}
// dec returns the integer `a` decremented by 1.
pub fn (mut a Integer) dec() {
a = a - one_int
}
@ -473,6 +490,8 @@ pub fn (a Integer) == (b Integer) bool {
return a.signum == b.signum && a.digits.len == b.digits.len && a.digits == b.digits
}
// abs_cmp returns the result of comparing the magnitudes of the integers `a` and `b`.
// It returns a negative int if `|a| < |b|`, 0 if `|a| == |b|`, and a positive int if `|a| > |b|`.
pub fn (a Integer) abs_cmp(b Integer) int {
return compare_digit_array(a.digits, b.digits)
}
@ -501,6 +520,7 @@ fn check_sign(a Integer) {
}
}
// get_bit checks whether the bit at the given index is set.
pub fn (a Integer) get_bit(i u32) bool {
check_sign(a)
target_index := i / 32
@ -511,6 +531,7 @@ pub fn (a Integer) get_bit(i u32) bool {
return (a.digits[target_index] >> offset) & 1 != 0
}
// set_bit sets the bit at the given index to the given value.
pub fn (mut a Integer) set_bit(i u32, value bool) {
check_sign(a)
target_index := i / 32
@ -537,6 +558,7 @@ pub fn (mut a Integer) set_bit(i u32, value bool) {
}
}
// bitwise_or returns the "bitwise or" of the integers `a` and `b`.
pub fn (a Integer) bitwise_or(b Integer) Integer {
check_sign(a)
check_sign(b)
@ -548,6 +570,7 @@ pub fn (a Integer) bitwise_or(b Integer) Integer {
}
}
// bitwise_and returns the "bitwise and" of the integers `a` and `b`.
pub fn (a Integer) bitwise_and(b Integer) Integer {
check_sign(a)
check_sign(b)
@ -559,6 +582,7 @@ pub fn (a Integer) bitwise_and(b Integer) Integer {
}
}
// bitwise_not returns the "bitwise not" of the integer `a`.
pub fn (a Integer) bitwise_not() Integer {
check_sign(a)
mut result := []u32{len: a.digits.len, init: 0}
@ -569,6 +593,7 @@ pub fn (a Integer) bitwise_not() Integer {
}
}
// bitwise_xor returns the "bitwise exclusive or" of the integers `a` and `b`.
pub fn (a Integer) bitwise_xor(b Integer) Integer {
check_sign(a)
check_sign(b)
@ -580,6 +605,7 @@ pub fn (a Integer) bitwise_xor(b Integer) Integer {
}
}
// lshift returns the integer `a` shifted left by `amount` bits.
pub fn (a Integer) lshift(amount u32) Integer {
if a.signum == 0 {
return a
@ -602,6 +628,7 @@ pub fn (a Integer) lshift(amount u32) Integer {
}
}
// rshift returns the integer `a` shifted right by `amount` bits.
pub fn (a Integer) rshift(amount u32) Integer {
if a.signum == 0 {
return a
@ -627,6 +654,7 @@ pub fn (a Integer) rshift(amount u32) Integer {
}
}
// binary_str returns the binary string representation of the integer `a`.
pub fn (integer Integer) binary_str() string {
// We have the zero integer
if integer.signum == 0 {
@ -634,8 +662,7 @@ pub fn (integer Integer) binary_str() string {
}
// Add the sign if present
sign_needed := integer.signum == -1
mut result_builder := strings.new_builder(integer.digits.len * 32 +
if sign_needed { 1 } else { 0 })
mut result_builder := strings.new_builder(integer.bit_len() + if sign_needed { 1 } else { 0 })
if sign_needed {
result_builder.write_string('-')
}
@ -648,6 +675,7 @@ pub fn (integer Integer) binary_str() string {
return result_builder.str()
}
// hex returns the hexadecimal string representation of the integer `a`.
pub fn (integer Integer) hex() string {
// We have the zero integer
if integer.signum == 0 {
@ -669,6 +697,7 @@ pub fn (integer Integer) hex() string {
return result_builder.str()
}
// radix_str returns the string representation of the integer `a` in the specified radix.
pub fn (integer Integer) radix_str(radix u32) string {
if integer.signum == 0 {
return '0'
@ -704,6 +733,7 @@ fn (integer Integer) general_radix_str(radix u32) string {
return rune_array.string()
}
// str returns the decimal string representation of the integer `a`.
pub fn (integer Integer) str() string {
return integer.radix_str(10)
}
@ -736,6 +766,8 @@ fn u32_to_hex_with_lz(value u32) string {
return result_builder.str()
}
// int returns the integer value of the integer `a`.
// NOTE: This may cause loss of precision.
pub fn (a Integer) int() int {
if a.signum == 0 {
return 0
@ -744,6 +776,8 @@ pub fn (a Integer) int() int {
return value * a.signum
}
// bytes returns the a byte representation of the integer a, along with the signum int.
// NOTE: The byte array returned is in big endian order.
pub fn (a Integer) bytes() ([]byte, int) {
if a.signum == 0 {
return []byte{len: 0}, 0
@ -769,30 +803,7 @@ pub fn (a Integer) bytes() ([]byte, int) {
return result, a.signum
}
pub fn (a Integer) gcd(b Integer) Integer {
if a.signum == 0 {
return b.abs()
}
if b.signum == 0 {
return a.abs()
}
if a.signum < 0 {
return a.neg().gcd(b)
}
if b.signum < 0 {
return a.gcd(b.neg())
}
mut x := a
mut y := b
mut r := x % y
for r.signum != 0 {
x = y
y = r
r = x % y
}
return y
}
// factorial returns the factorial of the integer `a`.
pub fn (a Integer) factorial() Integer {
if a.signum == 0 {
return one_int
@ -818,7 +829,7 @@ pub fn (a Integer) isqrt() Integer {
return a
}
mut shift := a.digits.len * 32 - bits.leading_zeros_32(a.digits.last())
mut shift := a.bit_len()
if shift & 1 == 1 {
shift += 1
}
@ -855,35 +866,44 @@ fn (bi Integer) msb() u32 {
return u32(32)
}
// Greatest-Common-Divisor https://en.wikipedia.org/wiki/Binary_GCD_algorithm
// The code below follows the 2013-christmas-special by D. Lemire & R. Corderoy
// https://en.algorithmica.org/hpc/analyzing-performance/gcd/
//
// discussion & further info https://lemire.me/blog/2013/12/26/fastest-way-to-compute-the-greatest-common-divisor/
pub fn (x Integer) gcd_binary(y Integer) Integer {
// Since standard-euclid-gcd is much faster on smaller sizes 4-8-Byte.
// In such a case, one could delegate back to big.Integer.gcd()
// Uncomment below and a all long-long goes to euclid-gcd.
//
// if x.digits.len + y.digits.len <= 4 {
// return x.gcd( y )
// }
if x.signum == 0 {
return y.abs()
// gcd returns the greatest common divisor of the two integers `a` and `b`.
pub fn (a Integer) gcd(b Integer) Integer {
if a.signum == 0 {
return b.abs()
}
if y.signum == 0 {
return x.abs()
if b.signum == 0 {
return a.abs()
}
if a.signum < 0 {
return a.neg().gcd(b)
}
if b.signum < 0 {
return a.gcd(b.neg())
}
if x.signum < 0 {
return x.neg().gcd(y)
if a.digits.len + b.digits.len <= 2 {
return gcd_euclid(a, b)
} else {
return gcd_binary(a, b)
}
if y.signum < 0 {
return x.gcd(y.neg())
}
fn gcd_euclid(x Integer, y Integer) Integer {
mut a := x
mut b := y
mut r := a % b
for r.signum != 0 {
a = b
b = r
r = a % b
}
return b
}
// Inspired by the 2013-christmas-special by D. Lemire & R. Corderoy https://en.algorithmica.org/hpc/analyzing-performance/gcd/
// For more information, refer to the Wikipedia article: https://en.wikipedia.org/wiki/Binary_GCD_algorithm
// Discussion and further information: https://lemire.me/blog/2013/12/26/fastest-way-to-compute-the-greatest-common-divisor/
fn gcd_binary(x Integer, y Integer) Integer {
mut a := x
mut b := y
@ -901,3 +921,13 @@ pub fn (x Integer) gcd_binary(y Integer) Integer {
}
return b.lshift(shift)
}
// bit_len returns the number of bits required to represent the integer `a`.
[direct_array_access; inline]
pub fn (x Integer) bit_len() int {
if x.signum == 0 {
return 0
}
return x.digits.len * 32 - bits.leading_zeros_32(x.digits.last())
}