math.big: add bit_len, optimize gcd, add documentation (#13872)
parent
8121a8ada0
commit
7ef7188f4b
|
@ -432,3 +432,16 @@ fn test_set_bit() {
|
|||
a.set_bit(100, false)
|
||||
assert a == b
|
||||
}
|
||||
|
||||
fn test_bit_len() {
|
||||
assert big.zero_int.bit_len() == 0
|
||||
assert big.one_int.bit_len() == 1
|
||||
|
||||
assert big.integer_from_u32(0xffffffff).bit_len() == 32
|
||||
|
||||
assert big.one_int.lshift(1239).bit_len() == 1240
|
||||
|
||||
assert big.integer_from_string('4338476092346017364013796407961305761039463198075691378460917856') or {
|
||||
panic('Could not read from decimal')
|
||||
}.bit_len() == 212
|
||||
}
|
||||
|
|
|
@ -32,6 +32,7 @@ fn int_signum(value int) int {
|
|||
return if value < 0 { -1 } else { 1 }
|
||||
}
|
||||
|
||||
// integer_from_int creates a new `big.Integer` from the given int value.
|
||||
pub fn integer_from_int(value int) Integer {
|
||||
if value == 0 {
|
||||
return zero_int
|
||||
|
@ -42,6 +43,7 @@ pub fn integer_from_int(value int) Integer {
|
|||
}
|
||||
}
|
||||
|
||||
// integer_from_u32 creates a new `big.Integer` from the given u32 value.
|
||||
pub fn integer_from_u32(value u32) Integer {
|
||||
if value == 0 {
|
||||
return zero_int
|
||||
|
@ -52,6 +54,7 @@ pub fn integer_from_u32(value u32) Integer {
|
|||
}
|
||||
}
|
||||
|
||||
// integer_from_i64 creates a new `big.Integer` from the given i64 value.
|
||||
pub fn integer_from_i64(value i64) Integer {
|
||||
if value == 0 {
|
||||
return zero_int
|
||||
|
@ -76,6 +79,7 @@ pub fn integer_from_i64(value i64) Integer {
|
|||
}
|
||||
}
|
||||
|
||||
// integer_from_u64 creates a new `big.Integer` from the given u64 value.
|
||||
pub fn integer_from_u64(value u64) Integer {
|
||||
if value == 0 {
|
||||
return zero_int
|
||||
|
@ -102,6 +106,8 @@ pub struct IntegerConfig {
|
|||
signum int = 1
|
||||
}
|
||||
|
||||
// integer_from_bytes creates a new `big.Integer` from the given byte array. By default, positive integers are assumed. If you want a negative integer, use in the following manner:
|
||||
// `value := big.integer_from_bytes(bytes, signum: -1)`
|
||||
pub fn integer_from_bytes(input []byte, config IntegerConfig) Integer {
|
||||
// Thank you to Miccah (@mcastorina) for this implementation and relevant unit tests.
|
||||
if input.len == 0 {
|
||||
|
@ -126,10 +132,13 @@ pub fn integer_from_bytes(input []byte, config IntegerConfig) Integer {
|
|||
}
|
||||
}
|
||||
|
||||
// integer_from_string creates a new `big.Integer` from the decimal digits specified in the given string.
|
||||
// For other bases, use `big.integer_from_radix` instead.
|
||||
pub fn integer_from_string(characters string) ?Integer {
|
||||
return integer_from_radix(characters, 10)
|
||||
}
|
||||
|
||||
// integer_from_radix creates a new `big.Integer` from the given string and radix.
|
||||
pub fn integer_from_radix(all_characters string, radix u32) ?Integer {
|
||||
if radix < 2 || radix > 36 {
|
||||
return error('Radix must be between 2 and 36 (inclusive)')
|
||||
|
@ -238,6 +247,7 @@ fn integer_from_regular_string(characters string, radix u32) Integer {
|
|||
}
|
||||
}
|
||||
|
||||
// abs returns the absolute value of the integer.
|
||||
pub fn (integer Integer) abs() Integer {
|
||||
return if integer.signum == 0 {
|
||||
zero_int
|
||||
|
@ -249,6 +259,7 @@ pub fn (integer Integer) abs() Integer {
|
|||
}
|
||||
}
|
||||
|
||||
// neg returns the result of negation of the integer.
|
||||
pub fn (integer Integer) neg() Integer {
|
||||
return if integer.signum == 0 {
|
||||
zero_int
|
||||
|
@ -337,6 +348,7 @@ pub fn (integer Integer) * (multiplicand Integer) Integer {
|
|||
}
|
||||
}
|
||||
|
||||
// div_mod returns the quotient and remainder of the integer division.
|
||||
pub fn (integer Integer) div_mod(divisor Integer) (Integer, Integer) {
|
||||
// Quick exits
|
||||
if divisor.signum == 0 {
|
||||
|
@ -385,6 +397,7 @@ pub fn (a Integer) % (b Integer) Integer {
|
|||
return r
|
||||
}
|
||||
|
||||
// pow returns the integer `a` raised to the power of the u32 `exponent`.
|
||||
pub fn (a Integer) pow(exponent u32) Integer {
|
||||
if exponent == 0 {
|
||||
return one_int
|
||||
|
@ -405,6 +418,7 @@ pub fn (a Integer) pow(exponent u32) Integer {
|
|||
return x * y
|
||||
}
|
||||
|
||||
// mod_pow returns the integer `a` raised to the power of the u32 `exponent` modulo the integer `divisor`.
|
||||
pub fn (a Integer) mod_pow(exponent u32, divisor Integer) Integer {
|
||||
if exponent == 0 {
|
||||
return one_int
|
||||
|
@ -425,6 +439,7 @@ pub fn (a Integer) mod_pow(exponent u32, divisor Integer) Integer {
|
|||
return x * y % divisor
|
||||
}
|
||||
|
||||
// big_mod_power returns the integer `a` raised to the power of the integer `exponent` modulo the integer `divisor`.
|
||||
pub fn (a Integer) big_mod_pow(exponent Integer, divisor Integer) Integer {
|
||||
if exponent.signum < 0 {
|
||||
panic('Exponent needs to be non-negative.')
|
||||
|
@ -461,10 +476,12 @@ pub fn (a Integer) big_mod_pow(exponent Integer, divisor Integer) Integer {
|
|||
return x * y % divisor
|
||||
}
|
||||
|
||||
// inc returns the integer `a` incremented by 1.
|
||||
pub fn (mut a Integer) inc() {
|
||||
a = a + one_int
|
||||
}
|
||||
|
||||
// dec returns the integer `a` decremented by 1.
|
||||
pub fn (mut a Integer) dec() {
|
||||
a = a - one_int
|
||||
}
|
||||
|
@ -473,6 +490,8 @@ pub fn (a Integer) == (b Integer) bool {
|
|||
return a.signum == b.signum && a.digits.len == b.digits.len && a.digits == b.digits
|
||||
}
|
||||
|
||||
// abs_cmp returns the result of comparing the magnitudes of the integers `a` and `b`.
|
||||
// It returns a negative int if `|a| < |b|`, 0 if `|a| == |b|`, and a positive int if `|a| > |b|`.
|
||||
pub fn (a Integer) abs_cmp(b Integer) int {
|
||||
return compare_digit_array(a.digits, b.digits)
|
||||
}
|
||||
|
@ -501,6 +520,7 @@ fn check_sign(a Integer) {
|
|||
}
|
||||
}
|
||||
|
||||
// get_bit checks whether the bit at the given index is set.
|
||||
pub fn (a Integer) get_bit(i u32) bool {
|
||||
check_sign(a)
|
||||
target_index := i / 32
|
||||
|
@ -511,6 +531,7 @@ pub fn (a Integer) get_bit(i u32) bool {
|
|||
return (a.digits[target_index] >> offset) & 1 != 0
|
||||
}
|
||||
|
||||
// set_bit sets the bit at the given index to the given value.
|
||||
pub fn (mut a Integer) set_bit(i u32, value bool) {
|
||||
check_sign(a)
|
||||
target_index := i / 32
|
||||
|
@ -537,6 +558,7 @@ pub fn (mut a Integer) set_bit(i u32, value bool) {
|
|||
}
|
||||
}
|
||||
|
||||
// bitwise_or returns the "bitwise or" of the integers `a` and `b`.
|
||||
pub fn (a Integer) bitwise_or(b Integer) Integer {
|
||||
check_sign(a)
|
||||
check_sign(b)
|
||||
|
@ -548,6 +570,7 @@ pub fn (a Integer) bitwise_or(b Integer) Integer {
|
|||
}
|
||||
}
|
||||
|
||||
// bitwise_and returns the "bitwise and" of the integers `a` and `b`.
|
||||
pub fn (a Integer) bitwise_and(b Integer) Integer {
|
||||
check_sign(a)
|
||||
check_sign(b)
|
||||
|
@ -559,6 +582,7 @@ pub fn (a Integer) bitwise_and(b Integer) Integer {
|
|||
}
|
||||
}
|
||||
|
||||
// bitwise_not returns the "bitwise not" of the integer `a`.
|
||||
pub fn (a Integer) bitwise_not() Integer {
|
||||
check_sign(a)
|
||||
mut result := []u32{len: a.digits.len, init: 0}
|
||||
|
@ -569,6 +593,7 @@ pub fn (a Integer) bitwise_not() Integer {
|
|||
}
|
||||
}
|
||||
|
||||
// bitwise_xor returns the "bitwise exclusive or" of the integers `a` and `b`.
|
||||
pub fn (a Integer) bitwise_xor(b Integer) Integer {
|
||||
check_sign(a)
|
||||
check_sign(b)
|
||||
|
@ -580,6 +605,7 @@ pub fn (a Integer) bitwise_xor(b Integer) Integer {
|
|||
}
|
||||
}
|
||||
|
||||
// lshift returns the integer `a` shifted left by `amount` bits.
|
||||
pub fn (a Integer) lshift(amount u32) Integer {
|
||||
if a.signum == 0 {
|
||||
return a
|
||||
|
@ -602,6 +628,7 @@ pub fn (a Integer) lshift(amount u32) Integer {
|
|||
}
|
||||
}
|
||||
|
||||
// rshift returns the integer `a` shifted right by `amount` bits.
|
||||
pub fn (a Integer) rshift(amount u32) Integer {
|
||||
if a.signum == 0 {
|
||||
return a
|
||||
|
@ -627,6 +654,7 @@ pub fn (a Integer) rshift(amount u32) Integer {
|
|||
}
|
||||
}
|
||||
|
||||
// binary_str returns the binary string representation of the integer `a`.
|
||||
pub fn (integer Integer) binary_str() string {
|
||||
// We have the zero integer
|
||||
if integer.signum == 0 {
|
||||
|
@ -634,8 +662,7 @@ pub fn (integer Integer) binary_str() string {
|
|||
}
|
||||
// Add the sign if present
|
||||
sign_needed := integer.signum == -1
|
||||
mut result_builder := strings.new_builder(integer.digits.len * 32 +
|
||||
if sign_needed { 1 } else { 0 })
|
||||
mut result_builder := strings.new_builder(integer.bit_len() + if sign_needed { 1 } else { 0 })
|
||||
if sign_needed {
|
||||
result_builder.write_string('-')
|
||||
}
|
||||
|
@ -648,6 +675,7 @@ pub fn (integer Integer) binary_str() string {
|
|||
return result_builder.str()
|
||||
}
|
||||
|
||||
// hex returns the hexadecimal string representation of the integer `a`.
|
||||
pub fn (integer Integer) hex() string {
|
||||
// We have the zero integer
|
||||
if integer.signum == 0 {
|
||||
|
@ -669,6 +697,7 @@ pub fn (integer Integer) hex() string {
|
|||
return result_builder.str()
|
||||
}
|
||||
|
||||
// radix_str returns the string representation of the integer `a` in the specified radix.
|
||||
pub fn (integer Integer) radix_str(radix u32) string {
|
||||
if integer.signum == 0 {
|
||||
return '0'
|
||||
|
@ -704,6 +733,7 @@ fn (integer Integer) general_radix_str(radix u32) string {
|
|||
return rune_array.string()
|
||||
}
|
||||
|
||||
// str returns the decimal string representation of the integer `a`.
|
||||
pub fn (integer Integer) str() string {
|
||||
return integer.radix_str(10)
|
||||
}
|
||||
|
@ -736,6 +766,8 @@ fn u32_to_hex_with_lz(value u32) string {
|
|||
return result_builder.str()
|
||||
}
|
||||
|
||||
// int returns the integer value of the integer `a`.
|
||||
// NOTE: This may cause loss of precision.
|
||||
pub fn (a Integer) int() int {
|
||||
if a.signum == 0 {
|
||||
return 0
|
||||
|
@ -744,6 +776,8 @@ pub fn (a Integer) int() int {
|
|||
return value * a.signum
|
||||
}
|
||||
|
||||
// bytes returns the a byte representation of the integer a, along with the signum int.
|
||||
// NOTE: The byte array returned is in big endian order.
|
||||
pub fn (a Integer) bytes() ([]byte, int) {
|
||||
if a.signum == 0 {
|
||||
return []byte{len: 0}, 0
|
||||
|
@ -769,30 +803,7 @@ pub fn (a Integer) bytes() ([]byte, int) {
|
|||
return result, a.signum
|
||||
}
|
||||
|
||||
pub fn (a Integer) gcd(b Integer) Integer {
|
||||
if a.signum == 0 {
|
||||
return b.abs()
|
||||
}
|
||||
if b.signum == 0 {
|
||||
return a.abs()
|
||||
}
|
||||
if a.signum < 0 {
|
||||
return a.neg().gcd(b)
|
||||
}
|
||||
if b.signum < 0 {
|
||||
return a.gcd(b.neg())
|
||||
}
|
||||
mut x := a
|
||||
mut y := b
|
||||
mut r := x % y
|
||||
for r.signum != 0 {
|
||||
x = y
|
||||
y = r
|
||||
r = x % y
|
||||
}
|
||||
return y
|
||||
}
|
||||
|
||||
// factorial returns the factorial of the integer `a`.
|
||||
pub fn (a Integer) factorial() Integer {
|
||||
if a.signum == 0 {
|
||||
return one_int
|
||||
|
@ -818,7 +829,7 @@ pub fn (a Integer) isqrt() Integer {
|
|||
return a
|
||||
}
|
||||
|
||||
mut shift := a.digits.len * 32 - bits.leading_zeros_32(a.digits.last())
|
||||
mut shift := a.bit_len()
|
||||
if shift & 1 == 1 {
|
||||
shift += 1
|
||||
}
|
||||
|
@ -855,35 +866,44 @@ fn (bi Integer) msb() u32 {
|
|||
return u32(32)
|
||||
}
|
||||
|
||||
// Greatest-Common-Divisor https://en.wikipedia.org/wiki/Binary_GCD_algorithm
|
||||
// The code below follows the 2013-christmas-special by D. Lemire & R. Corderoy
|
||||
// https://en.algorithmica.org/hpc/analyzing-performance/gcd/
|
||||
//
|
||||
// discussion & further info https://lemire.me/blog/2013/12/26/fastest-way-to-compute-the-greatest-common-divisor/
|
||||
|
||||
pub fn (x Integer) gcd_binary(y Integer) Integer {
|
||||
// Since standard-euclid-gcd is much faster on smaller sizes 4-8-Byte.
|
||||
// In such a case, one could delegate back to big.Integer.gcd()
|
||||
// Uncomment below and a all long-long goes to euclid-gcd.
|
||||
//
|
||||
// if x.digits.len + y.digits.len <= 4 {
|
||||
// return x.gcd( y )
|
||||
// }
|
||||
|
||||
if x.signum == 0 {
|
||||
return y.abs()
|
||||
// gcd returns the greatest common divisor of the two integers `a` and `b`.
|
||||
pub fn (a Integer) gcd(b Integer) Integer {
|
||||
if a.signum == 0 {
|
||||
return b.abs()
|
||||
}
|
||||
if y.signum == 0 {
|
||||
return x.abs()
|
||||
if b.signum == 0 {
|
||||
return a.abs()
|
||||
}
|
||||
if a.signum < 0 {
|
||||
return a.neg().gcd(b)
|
||||
}
|
||||
if b.signum < 0 {
|
||||
return a.gcd(b.neg())
|
||||
}
|
||||
|
||||
if x.signum < 0 {
|
||||
return x.neg().gcd(y)
|
||||
}
|
||||
if y.signum < 0 {
|
||||
return x.gcd(y.neg())
|
||||
if a.digits.len + b.digits.len <= 2 {
|
||||
return gcd_euclid(a, b)
|
||||
} else {
|
||||
return gcd_binary(a, b)
|
||||
}
|
||||
}
|
||||
|
||||
fn gcd_euclid(x Integer, y Integer) Integer {
|
||||
mut a := x
|
||||
mut b := y
|
||||
mut r := a % b
|
||||
for r.signum != 0 {
|
||||
a = b
|
||||
b = r
|
||||
r = a % b
|
||||
}
|
||||
return b
|
||||
}
|
||||
|
||||
// Inspired by the 2013-christmas-special by D. Lemire & R. Corderoy https://en.algorithmica.org/hpc/analyzing-performance/gcd/
|
||||
// For more information, refer to the Wikipedia article: https://en.wikipedia.org/wiki/Binary_GCD_algorithm
|
||||
// Discussion and further information: https://lemire.me/blog/2013/12/26/fastest-way-to-compute-the-greatest-common-divisor/
|
||||
fn gcd_binary(x Integer, y Integer) Integer {
|
||||
mut a := x
|
||||
mut b := y
|
||||
|
||||
|
@ -901,3 +921,13 @@ pub fn (x Integer) gcd_binary(y Integer) Integer {
|
|||
}
|
||||
return b.lshift(shift)
|
||||
}
|
||||
|
||||
// bit_len returns the number of bits required to represent the integer `a`.
|
||||
[direct_array_access; inline]
|
||||
pub fn (x Integer) bit_len() int {
|
||||
if x.signum == 0 {
|
||||
return 0
|
||||
}
|
||||
|
||||
return x.digits.len * 32 - bits.leading_zeros_32(x.digits.last())
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue