gg: add cubic Bézier curves + examples (#11286)
parent
3249f8f0e7
commit
833bf2cf15
|
@ -0,0 +1,35 @@
|
|||
module main
|
||||
|
||||
import gg
|
||||
import gx
|
||||
|
||||
const (
|
||||
p1_and_p2 = [f32(200.0), 200.0, 400.0, 300.0]
|
||||
ctrl_p1_and_p2 = [f32(200.0), 100.0, 400.0, 100.0]
|
||||
)
|
||||
|
||||
struct App {
|
||||
mut:
|
||||
gg &gg.Context
|
||||
}
|
||||
|
||||
fn main() {
|
||||
mut app := &App{
|
||||
gg: 0
|
||||
}
|
||||
app.gg = gg.new_context(
|
||||
bg_color: gx.rgb(174, 198, 255)
|
||||
width: 600
|
||||
height: 400
|
||||
window_title: 'Cubic Bézier curve'
|
||||
frame_fn: frame
|
||||
user_data: app
|
||||
)
|
||||
app.gg.run()
|
||||
}
|
||||
|
||||
fn frame(mut app App) {
|
||||
app.gg.begin()
|
||||
app.gg.draw_cubic_bezier(p1_and_p2, ctrl_p1_and_p2, gx.blue)
|
||||
app.gg.end()
|
||||
}
|
|
@ -0,0 +1,60 @@
|
|||
module main
|
||||
|
||||
import gg
|
||||
import gx
|
||||
|
||||
const rate = f32(1) / 60 * 10
|
||||
|
||||
struct App {
|
||||
mut:
|
||||
gg &gg.Context
|
||||
anim &Anim
|
||||
}
|
||||
|
||||
struct Anim {
|
||||
mut:
|
||||
time f32
|
||||
reverse bool
|
||||
}
|
||||
|
||||
fn (mut anim Anim) advance() {
|
||||
if anim.reverse {
|
||||
anim.time -= 1 * rate
|
||||
} else {
|
||||
anim.time += 1 * rate
|
||||
}
|
||||
// Use some arbitrary value that fits 60 fps
|
||||
if anim.time > 80 * rate || anim.time < -80 * rate {
|
||||
anim.reverse = !anim.reverse
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
mut app := &App{
|
||||
gg: 0
|
||||
anim: &Anim{}
|
||||
}
|
||||
app.gg = gg.new_context(
|
||||
bg_color: gx.rgb(174, 198, 255)
|
||||
width: 600
|
||||
height: 400
|
||||
window_title: 'Animated cubic Bézier curve'
|
||||
frame_fn: frame
|
||||
user_data: app
|
||||
)
|
||||
app.gg.run()
|
||||
}
|
||||
|
||||
fn frame(mut app App) {
|
||||
time := app.anim.time
|
||||
|
||||
ctrl_p1_x := f32(200.0) + (40 * time)
|
||||
ctrl_p2_x := f32(400.0) + (-40 * time)
|
||||
|
||||
p1_and_p2 := [f32(200.0), 200.0 + (10 * time), 400.0, 200.0 + (10 * time)]
|
||||
|
||||
app.gg.begin()
|
||||
app.gg.draw_cubic_bezier(p1_and_p2, [ctrl_p1_x, 100.0, ctrl_p2_x, 100.0], gx.blue)
|
||||
app.gg.end()
|
||||
app.anim.advance()
|
||||
}
|
52
vlib/gg/gg.v
52
vlib/gg/gg.v
|
@ -674,6 +674,58 @@ pub fn (ctx &Context) draw_empty_poly(points []f32, c gx.Color) {
|
|||
sgl.end()
|
||||
}
|
||||
|
||||
// draw_cubic_bezier draws a cubic Bézier curve, also known as a spline, from four points.
|
||||
// The four points is provided as two arrays; `points` and `control_points`, which is both pairs of x and y coordinates.
|
||||
// Thus a coordinate pair could be declared like: `points := [x1, y1, x2, y2]`.
|
||||
// Please see `draw_cubic_bezier_in_steps` to control the amount of steps (segments) used to draw the curve.
|
||||
pub fn (ctx &Context) draw_cubic_bezier(points []f32, control_points []f32, c gx.Color) {
|
||||
ctx.draw_cubic_bezier_in_steps(points, control_points, u32(30 * ctx.scale), c)
|
||||
}
|
||||
|
||||
// draw_cubic_bezier_in_steps draws a cubic Bézier curve, also known as a spline, from four points.
|
||||
// The smoothness of the curve can be controlled with the `steps` parameter. `steps` determines how many iterations is
|
||||
// taken to draw the curve.
|
||||
// The four points is provided as two arrays; `points` and `control_points`, which is both pairs of x and y coordinates.
|
||||
// Thus a coordinate pair could be declared like: `points := [x1, y1, x2, y2]`.
|
||||
pub fn (ctx &Context) draw_cubic_bezier_in_steps(points []f32, control_points []f32, steps u32, c gx.Color) {
|
||||
assert steps > 0
|
||||
assert points.len == 4
|
||||
assert points.len == control_points.len
|
||||
|
||||
if c.a != 255 {
|
||||
sgl.load_pipeline(ctx.timage_pip)
|
||||
}
|
||||
sgl.c4b(c.r, c.g, c.b, c.a)
|
||||
|
||||
sgl.begin_line_strip()
|
||||
|
||||
p1_x, p1_y := points[0], points[1]
|
||||
p2_x, p2_y := points[2], points[3]
|
||||
|
||||
ctrl_p1_x, ctrl_p1_y := control_points[0], control_points[1]
|
||||
ctrl_p2_x, ctrl_p2_y := control_points[2], control_points[3]
|
||||
|
||||
// The constant 3 is actually points.len() - 1;
|
||||
|
||||
step := f32(1.0) / steps
|
||||
sgl.v2f(p1_x * ctx.scale, p1_y * ctx.scale)
|
||||
for u := f32(0.0); u <= f32(1.0); u += step {
|
||||
pow_2_u := u * u
|
||||
pow_3_u := pow_2_u * u
|
||||
|
||||
x := pow_3_u * (p2_x + 3 * (ctrl_p1_x - ctrl_p2_x) - p1_x) +
|
||||
3 * pow_2_u * (p1_x - 2 * ctrl_p1_x + ctrl_p2_x) + 3 * u * (ctrl_p1_x - p1_x) + p1_x
|
||||
|
||||
y := pow_3_u * (p2_y + 3 * (ctrl_p1_y - ctrl_p2_y) - p1_y) +
|
||||
3 * pow_2_u * (p1_y - 2 * ctrl_p1_y + ctrl_p2_y) + 3 * u * (ctrl_p1_y - p1_y) + p1_y
|
||||
|
||||
sgl.v2f(x * ctx.scale, y * ctx.scale)
|
||||
}
|
||||
sgl.v2f(p2_x * ctx.scale, p2_y * ctx.scale)
|
||||
|
||||
sgl.end()
|
||||
}
|
||||
|
||||
// window_size returns the `Size` of the active window
|
||||
pub fn window_size() Size {
|
||||
s := dpi_scale()
|
||||
|
|
Loading…
Reference in New Issue