math.fractions: refactor and add more tests

pull/4812/head
Hungry Blue Dev 2020-05-10 19:55:33 +05:30 committed by GitHub
parent 43ec01b23d
commit 8aba3eaa07
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 451 additions and 177 deletions

View File

@ -1,24 +1,39 @@
// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved. // Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license // Use of this source code is governed by an MIT license
// that can be found in the LICENSE file. // that can be found in the LICENSE file.
module fractions module fractions
import math import math
import math.bits import math.bits
// Fraction Struct // Fraction Struct
// A Fraction has a numerator (n) and a denominator (d). If the user uses
// the helper functions in this module, then the following are guaranteed:
// 1.
struct Fraction { struct Fraction {
n i64 n i64
d i64 d i64
pub:
is_reduced bool
} }
// A factory function for creating a Fraction, adds a boundary condition // A factory function for creating a Fraction, adds a boundary condition
pub fn fraction(n i64, d i64) Fraction{ // to ensure that the denominator is non-zero. It automatically converts
// the negative denominator to positive and adjusts the numerator.
// NOTE: Fractions created are not reduced by default.
pub fn fraction(n, d i64) Fraction {
if d != 0 { if d != 0 {
return Fraction{n, d} // The denominator is always guaranteed to be positive (and non-zero).
if d < 0 {
return fraction(-n, -d)
} else {
return Fraction{
n: n
d: d
is_reduced: math.gcd(n, d) == 1
} }
else { }
} else {
panic('Denominator cannot be zero') panic('Denominator cannot be zero')
} }
} }
@ -28,78 +43,177 @@ pub fn (f Fraction) str() string {
return '$f.n/$f.d' return '$f.n/$f.d'
} }
//
// + ---------------------+
// | Arithmetic functions.|
// + ---------------------+
//
// These are implemented from Knuth, TAOCP Vol 2. Section 4.5
//
// Returns a correctly reduced result for both addition and subtraction
fn general_addition_result(f1, f2 Fraction, addition bool) Fraction {
d1 := math.gcd(f1.d, f2.d)
// d1 happends to be 1 around 600/(pi)^2 or 61 percent of the time (Theorem 4.5.2D)
if d1 == 1 {
mut n := i64(0)
num1n2d := f1.n * f2.d
num1d2n := f1.d * f2.n
if addition {
n = num1n2d + num1d2n
} else {
n = num1n2d - num1d2n
}
return Fraction{
n: n
d: f1.d * f2.d
is_reduced: true
}
}
// Here d1 > 1.
// Without the i64(...), t is declared as an int
// and it does not have enough precision
mut t := i64(0)
term1 := f1.n * (f2.d / d1)
term2 := f2.n * (f1.d / d1)
if addition {
t = term1 + term2
} else {
t = term1 - term2
}
d2 := math.gcd(t, d1)
return Fraction{
n: t / d2
d: (f1.d / d1) * (f2.d / d2)
is_reduced: true
}
}
// Fraction add using operator overloading // Fraction add using operator overloading
pub fn (f1 Fraction) +(f2 Fraction) Fraction { pub fn (f1 Fraction) +(f2 Fraction) Fraction {
if f1.d == f2.d { return general_addition_result(f1.reduce(), f2.reduce(), true)
return Fraction{f1.n + f2.n, f1.d}
}
else {
return Fraction{(f1.n * f2.d) + (f2.n * f1.d), f1.d * f2.d}
}
} }
// Fraction subtract using operator overloading // Fraction subtract using operator overloading
pub fn (f1 Fraction) -(f2 Fraction) Fraction { pub fn (f1 Fraction) -(f2 Fraction) Fraction {
if f1.d == f2.d { return general_addition_result(f1.reduce(), f2.reduce(), false)
return Fraction{f1.n - f2.n, f1.d}
} }
else {
return Fraction{(f1.n * f2.d) - (f2.n * f1.d), f1.d * f2.d} // Returns a correctly reduced result for both multiplication and division
fn general_multiplication_result(f1, f2 Fraction, multiplication bool) Fraction {
// Theorem: If f1 and f2 are reduced i.e. gcd(f1.n, f1.d) == 1 and gcd(f2.n, f2.d) == 1,
// then gcd(f1.n * f2.n, f1.d * f2.d) == gcd(f1.n, f2.d) * gcd(f1.d, f2.n)
// Knuth poses this an exercise for 4.5.1. - Exercise 2
mut d1 := i64(0)
mut d2 := i64(0)
mut n := i64(0)
mut d := i64(0)
// The terms are flipped for multiplication and division, so the gcds must be calculated carefully
// We do multiple divisions in order to prevent any possible overflows. Also, note that:
// if d = gcd(a, b) for example, then d divides both a and b
if multiplication {
d1 = math.gcd(f1.n, f2.d)
d2 = math.gcd(f1.d, f2.n)
n = (f1.n / d1) * (f2.n / d2)
d = (f2.d / d1) * (f1.d / d2)
} else {
d1 = math.gcd(f1.n, f2.n)
d2 = math.gcd(f1.d, f2.d)
n = (f1.n / d1) * (f2.d / d2)
d = (f2.n / d1) * (f1.d / d2)
}
return Fraction{
n: n
d: d
is_reduced: true
} }
} }
// Fraction multiply using operator overloading // Fraction multiply using operator overloading
// pub fn (f1 Fraction) * (f2 Fraction) Fraction { pub fn (f1 Fraction) *(f2 Fraction) Fraction {
// return Fraction{f1.n * f2.n,f1.d * f2.d} return general_multiplication_result(f1.reduce(), f2.reduce(), true)
// } }
// Fraction divide using operator overloading // Fraction divide using operator overloading
// pub fn (f1 Fraction) / (f2 Fraction) Fraction { pub fn (f1 Fraction) /(f2 Fraction) Fraction {
// return Fraction{f1.n * f2.d,f1.d * f2.n} if f2.n == 0 {
// } panic('Cannot divive by zero')
}
// If the second fraction is negative, it will
// mess up the sign. We need positive denominator
if f2.n < 0 {
return f1.negate() / f2.negate()
}
return general_multiplication_result(f1.reduce(), f2.reduce(), false)
}
// Fraction add method // Fraction add method. Deprecated. Use the operator instead.
[deprecated]
pub fn (f1 Fraction) add(f2 Fraction) Fraction { pub fn (f1 Fraction) add(f2 Fraction) Fraction {
return f1 + f2 return f1 + f2
} }
// Fraction subtract method // Fraction subtract method. Deprecated. Use the operator instead.
[deprecated]
pub fn (f1 Fraction) subtract(f2 Fraction) Fraction { pub fn (f1 Fraction) subtract(f2 Fraction) Fraction {
return f1 - f2 return f1 - f2
} }
// Fraction multiply method // Fraction multiply method. Deprecated. Use the operator instead.
[deprecated]
pub fn (f1 Fraction) multiply(f2 Fraction) Fraction { pub fn (f1 Fraction) multiply(f2 Fraction) Fraction {
return Fraction{f1.n * f2.n, f1.d * f2.d} return f1 * f2
} }
// Fraction divide method // Fraction divide method. Deprecated. Use the operator instead.
[deprecated]
pub fn (f1 Fraction) divide(f2 Fraction) Fraction { pub fn (f1 Fraction) divide(f2 Fraction) Fraction {
return Fraction{f1.n * f2.d, f1.d * f2.n} return f1 / f2
}
// Fraction negate method
pub fn (f1 Fraction) negate() Fraction {
return Fraction{
n: -f1.n
d: f1.d
is_reduced: f1.is_reduced
}
} }
// Fraction reciprocal method // Fraction reciprocal method
pub fn (f1 Fraction) reciprocal() Fraction { pub fn (f1 Fraction) reciprocal() Fraction {
if f1.n == 0 { panic('Denominator cannot be zero') } if f1.n == 0 {
return Fraction{f1.d, f1.n} panic('Denominator cannot be zero')
}
return Fraction{
n: f1.d
d: f1.n
is_reduced: f1.is_reduced
} }
// Fraction method which gives greatest common divisor of numerator and denominator
pub fn (f1 Fraction) gcd() i64 {
return math.gcd(f1.n, f1.d)
} }
// Fraction method which reduces the fraction // Fraction method which reduces the fraction
pub fn (f1 Fraction) reduce() Fraction { pub fn (f1 Fraction) reduce() Fraction {
cf := f1.gcd() if f1.is_reduced {
return Fraction{f1.n / cf, f1.d / cf} return f1
}
cf := math.gcd(f1.n, f1.d)
return Fraction{
n: f1.n / cf
d: f1.d / cf
is_reduced: true
}
} }
// Converts Fraction to decimal // f64 converts the Fraction to 64-bit floating point
pub fn (f1 Fraction) f64() f64 { pub fn (f1 Fraction) f64() f64 {
return f64(f1.n) / f64(f1.d) return f64(f1.n) / f64(f1.d)
} }
//
// + ------------------+
// | Utility functions.|
// + ------------------+
//
// Returns the absolute value of an i64 // Returns the absolute value of an i64
fn abs(num i64) i64 { fn abs(num i64) i64 {
if num < 0 { if num < 0 {
@ -109,18 +223,65 @@ fn abs(num i64) i64 {
} }
} }
fn cmp_i64s(a, b i64) int {
if a == b {
return 0
} else if a > b {
return 1
} else {
return -1
}
}
fn cmp_f64s(a, b f64) int {
// V uses epsilon comparison internally
if a == b {
return 0
} else if a > b {
return 1
} else {
return -1
}
}
// Two integers are safe to multiply when their bit lengths // Two integers are safe to multiply when their bit lengths
// sum up to less than 64 (conservative estimate). // sum up to less than 64 (conservative estimate).
fn safe_to_multiply(a, b i64) bool { fn safe_to_multiply(a, b i64) bool {
return (bits.len_64(abs(a)) + bits.len_64(abs(b))) < 64 return (bits.len_64(abs(a)) + bits.len_64(abs(b))) < 64
} }
// Compares two Fractions fn cmp(f1, f2 Fraction) int {
pub fn (f1 Fraction) equals(f2 Fraction) bool {
if safe_to_multiply(f1.n, f2.d) && safe_to_multiply(f2.n, f1.d) { if safe_to_multiply(f1.n, f2.d) && safe_to_multiply(f2.n, f1.d) {
return (f1.n * f2.d) == (f2.n * f1.d) return cmp_i64s(f1.n * f2.d, f2.n * f1.d)
} else {
return cmp_f64s(f1.f64(), f2.f64())
} }
r1 := f1.reduce() }
r2 := f2.reduce()
return (r1.n == r2.n) && (r1.d == r2.d) // +-----------------------------+
// | Public comparison functions |
// +-----------------------------+
// equals returns true if both the Fractions are equal
pub fn (f1 Fraction) equals(f2 Fraction) bool {
return cmp(f1, f2) == 0
}
// ge returns true if f1 >= f2
pub fn (f1 Fraction) ge(f2 Fraction) bool {
return cmp(f1, f2) >= 0
}
// gt returns true if f1 > f2
pub fn (f1 Fraction) gt(f2 Fraction) bool {
return cmp(f1, f2) > 0
}
// le returns true if f1 <= f2
pub fn (f1 Fraction) le(f2 Fraction) bool {
return cmp(f1, f2) <= 0
}
// lt returns true if f1 < f2
pub fn (f1 Fraction) lt(f2 Fraction) bool {
return cmp(f1, f2) < 0
} }

View File

@ -1,153 +1,266 @@
import math.fractions as fractions import math.fractions
// Results are verified using https://www.calculatorsoup.com/calculators/math/fractions.php // (Old) results are verified using https://www.calculatorsoup.com/calculators/math/fractions.php
// Newer ones are contrived for corner cases or prepared by hand.
fn test_fraction_creation() { fn test_4_by_8_f64_and_str() {
mut f1 := fractions.fraction(4,8) f := fractions.fraction(4, 8)
assert f1.f64() == 0.5 assert f.f64() == 0.5
assert f1.str().eq('4/8') assert f.str() == '4/8'
f1 = fractions.fraction(10,5)
assert f1.f64() == 2.0
assert f1.str().eq('10/5')
f1 = fractions.fraction(9,3)
assert f1.f64() == 3.0
assert f1.str().eq('9/3')
} }
fn test_fraction_add() { fn test_10_by_5_f64_and_str() {
mut f1 := fractions.fraction(4,8) f := fractions.fraction(10, 5)
mut f2 := fractions.fraction(5,10) assert f.f64() == 2.0
mut sum := f1 + f2 assert f.str() == '10/5'
}
fn test_9_by_3_f64_and_str() {
f := fractions.fraction(9, 3)
assert f.f64() == 3.0
assert f.str() == '9/3'
}
fn test_4_by_minus_5_f64_and_str() {
f := fractions.fraction(4, -5)
assert f.f64() == -0.8
assert f.str() == '-4/5'
}
fn test_minus_7_by_minus_92_str() {
f := fractions.fraction(-7, -5)
assert f.str() == '7/5'
}
fn test_4_by_8_plus_5_by_10() {
f1 := fractions.fraction(4, 8)
f2 := fractions.fraction(5, 10)
sum := f1 + f2
assert sum.f64() == 1.0 assert sum.f64() == 1.0
assert sum.str().eq('80/80') assert sum.str() == '1/1'
f1 = fractions.fraction(5,5) assert sum.equals(fractions.fraction(1, 1))
f2 = fractions.fraction(8,8) }
sum = f1 + f2
fn test_5_by_5_plus_8_by_8() {
f1 := fractions.fraction(5, 5)
f2 := fractions.fraction(8, 8)
sum := f1 + f2
assert sum.f64() == 2.0 assert sum.f64() == 2.0
assert sum.str().eq('80/40') assert sum.str() == '2/1'
f1 = fractions.fraction(9,3) assert sum.equals(fractions.fraction(2, 1))
f2 = fractions.fraction(1,3)
sum = f1 + f2
$if debug {
println(sum.f64())
}
assert sum.str().eq('10/3')
f1 = fractions.fraction(3,7)
f2 = fractions.fraction(1,4)
sum = f1 + f2
$if debug {
println(sum.f64())
}
assert sum.str().eq('19/28')
} }
fn test_fraction_subtract() { fn test_9_by_3_plus_1_by_3() {
mut f1 := fractions.fraction(4,8) f1 := fractions.fraction(9, 3)
mut f2 := fractions.fraction(5,10) f2 := fractions.fraction(1, 3)
mut diff := f2 - f1 sum := f1 + f2
assert diff.f64() == 0 assert sum.str() == '10/3'
assert diff.str().eq('0/80') assert sum.equals(fractions.fraction(10, 3))
f1 = fractions.fraction(5,5)
f2 = fractions.fraction(8,8)
diff = f2 - f1
assert diff.f64() == 0
assert diff.str().eq('0/40')
f1 = fractions.fraction(9,3)
f2 = fractions.fraction(1,3)
diff = f1 - f2
$if debug {
println(diff.f64())
}
assert diff.str().eq('8/3')
f1 = fractions.fraction(3,7)
f2 = fractions.fraction(1,4)
diff = f1 - f2
$if debug {
println(diff.f64())
}
assert diff.str().eq('5/28')
} }
fn test_fraction_multiply() { fn test_3_by_7_plus_1_by_4() {
mut f1 := fractions.fraction(4,8) f1 := fractions.fraction(3, 7)
mut f2 := fractions.fraction(5,10) f2 := fractions.fraction(1, 4)
mut product := f1.multiply(f2) sum := f1 + f2
assert sum.str() == '19/28'
assert sum.equals(fractions.fraction(19, 28))
}
fn test_36529_by_12409100000_plus_418754901_by_9174901000() {
f1 := fractions.fraction(i64(36529), i64(12409100000))
f2 := fractions.fraction(i64(418754901), i64(9174901000))
sum := f1 + f2
assert sum.str() == '5196706591957729/113852263999100000'
}
fn test_4_by_8_plus_minus_5_by_10() {
f1 := fractions.fraction(4, 8)
f2 := fractions.fraction(-5, 10)
diff := f2 + f1
assert diff.f64() == 0
assert diff.str() == '0/1'
}
fn test_4_by_8_minus_5_by_10() {
f1 := fractions.fraction(4, 8)
f2 := fractions.fraction(5, 10)
diff := f2 - f1
assert diff.f64() == 0
assert diff.str() == '0/1'
}
fn test_5_by_5_minus_8_by_8() {
f1 := fractions.fraction(5, 5)
f2 := fractions.fraction(8, 8)
diff := f2 - f1
assert diff.f64() == 0
assert diff.str() == '0/1'
}
fn test_9_by_3_minus_1_by_3() {
f1 := fractions.fraction(9, 3)
f2 := fractions.fraction(1, 3)
diff := f1 - f2
assert diff.str() == '8/3'
}
fn test_3_by_7_minus_1_by_4() {
f1 := fractions.fraction(3, 7)
f2 := fractions.fraction(1, 4)
diff := f1 - f2
assert diff.str() == '5/28'
}
fn test_36529_by_12409100000_minus_418754901_by_9174901000() {
f1 := fractions.fraction(i64(36529), i64(12409100000))
f2 := fractions.fraction(i64(418754901), i64(9174901000))
sum := f1 - f2
assert sum.str() == '-5196036292040471/113852263999100000'
}
fn test_4_by_8_times_5_by_10() {
f1 := fractions.fraction(4, 8)
f2 := fractions.fraction(5, 10)
product := f1 * f2
assert product.f64() == 0.25 assert product.f64() == 0.25
assert product.str().eq('20/80') assert product.str() == '1/4'
f1 = fractions.fraction(5,5) }
f2 = fractions.fraction(8,8)
product = f1.multiply(f2) fn test_5_by_5_times_8_by_8() {
f1 := fractions.fraction(5, 5)
f2 := fractions.fraction(8, 8)
product := f1 * f2
assert product.f64() == 1.0 assert product.f64() == 1.0
assert product.str().eq('40/40') assert product.str() == '1/1'
f1 = fractions.fraction(9,3) }
f2 = fractions.fraction(1,3)
product = f1.multiply(f2) fn test_9_by_3_times_1_by_3() {
f1 := fractions.fraction(9, 3)
f2 := fractions.fraction(1, 3)
product := f1 * f2
assert product.f64() == 1.0 assert product.f64() == 1.0
assert product.str().eq('9/9') assert product.str() == '1/1'
f1 = fractions.fraction(3,7)
f2 = fractions.fraction(1,4)
product = f1.multiply(f2)
$if debug {
println(product.f64())
}
assert product.str().eq('3/28')
} }
fn test_fraction_divide() { fn test_3_by_7_times_1_by_4() {
mut f1 := fractions.fraction(4,8) f1 := fractions.fraction(3, 7)
mut f2 := fractions.fraction(5,10) f2 := fractions.fraction(1, 4)
mut re := f1.divide(f2) product := f2 * f1
assert re.f64() == 1.0 assert product.f64() == (3.0 / 28.0)
assert re.str().eq('40/40') assert product.str() == '3/28'
f1 = fractions.fraction(5,5)
f2 = fractions.fraction(8,8)
re = f1.divide(f2)
assert re.f64() == 1.0
assert re.str().eq('40/40')
f1 = fractions.fraction(9,3)
f2 = fractions.fraction(1,3)
re = f1.divide(f2)
assert re.f64() == 9.0
assert re.str().eq('27/3')
f1 = fractions.fraction(3,7)
f2 = fractions.fraction(1,4)
re = f1.divide(f2)
$if debug {
println(re.f64())
}
assert re.str().eq('12/7')
} }
fn test_fraction_reciprocal() { fn test_4_by_8_over_5_by_10() {
mut f1 := fractions.fraction(4,8) f1 := fractions.fraction(4, 8)
assert f1.reciprocal().str().eq('8/4') f2 := fractions.fraction(5, 10)
f1 = fractions.fraction(5,10) q := f1 / f2
assert f1.reciprocal().str().eq('10/5') assert q.f64() == 1.0
f1 = fractions.fraction(5,5) assert q.str() == '1/1'
assert f1.reciprocal().str().eq('5/5')
f1 = fractions.fraction(8,8)
assert f1.reciprocal().str().eq('8/8')
f1 = fractions.fraction(9,3)
assert f1.reciprocal().str().eq('3/9')
f1 = fractions.fraction(1,3)
assert f1.reciprocal().str().eq('3/1')
f1 = fractions.fraction(3,7)
assert f1.reciprocal().str().eq('7/3')
f1 = fractions.fraction(1,4)
assert f1.reciprocal().str().eq('4/1')
} }
fn test_fraction_equals() { fn test_5_by_5_over_8_by_8() {
mut f1 := fractions.fraction(4,8) f1 := fractions.fraction(5, 5)
mut f2 := fractions.fraction(5,10) f2 := fractions.fraction(8, 8)
q := f1 / f2
assert q.f64() == 1.0
assert q.str() == '1/1'
}
fn test_9_by_3_over_1_by_3() {
f1 := fractions.fraction(9, 3)
f2 := fractions.fraction(1, 3)
q := f1 / f2
assert q.f64() == 9.0
assert q.str() == '9/1'
}
fn test_3_by_7_over_1_by_4() {
f1 := fractions.fraction(3, 7)
f2 := fractions.fraction(1, 4)
q := f1 / f2
assert q.str() == '12/7'
}
fn test_reciprocal_4_by_8() {
f := fractions.fraction(4, 8)
assert f.reciprocal().str() == '8/4'
}
fn test_reciprocal_5_by_10() {
f := fractions.fraction(5, 10)
assert f.reciprocal().str() == '10/5'
}
fn test_reciprocal_5_by_5() {
f := fractions.fraction(5, 5)
assert f.reciprocal().str() == '5/5'
}
fn test_reciprocal_8_by_8() {
f := fractions.fraction(8, 8)
assert f.reciprocal().str() == '8/8'
}
fn test_reciprocal_9_by_3() {
f := fractions.fraction(9, 3)
assert f.reciprocal().str() == '3/9'
}
fn test_reciprocal_1_by_3() {
f := fractions.fraction(1, 3)
assert f.reciprocal().str() == '3/1'
}
fn test_reciprocal_7_by_3() {
f := fractions.fraction(7, 3)
assert f.reciprocal().str() == '3/7'
}
fn test_reciprocal_1_by_4() {
f := fractions.fraction(1, 4)
assert f.reciprocal().str() == '4/1'
}
fn test_4_by_8_equals_5_by_10() {
f1 := fractions.fraction(4, 8)
f2 := fractions.fraction(5, 10)
assert f1.equals(f2) assert f1.equals(f2)
f1 = fractions.fraction(1,2) }
f2 = fractions.fraction(3,4)
fn test_1_by_2_does_not_equal_3_by_4() {
f1 := fractions.fraction(1, 2)
f2 := fractions.fraction(3, 4)
assert !f1.equals(f2) assert !f1.equals(f2)
} }
fn test_gcd_and_reduce(){ fn test_reduce_3_by_9() {
f := fractions.fraction(3, 9) f := fractions.fraction(3, 9)
assert f.gcd() == 3
assert f.reduce().equals(fractions.fraction(1, 3)) assert f.reduce().equals(fractions.fraction(1, 3))
} }
fn test_1_by_3_less_than_2_by_4() {
f1 := fractions.fraction(1, 3)
f2 := fractions.fraction(2, 4)
assert f1.lt(f2)
assert f1.le(f2)
}
fn test_2_by_3_greater_than_2_by_4() {
f1 := fractions.fraction(2, 3)
f2 := fractions.fraction(2, 4)
assert f1.gt(f2)
assert f1.ge(f2)
}
fn test_5_by_7_not_less_than_2_by_4() {
f1 := fractions.fraction(5, 7)
f2 := fractions.fraction(2, 4)
assert !f1.lt(f2)
assert !f1.le(f2)
}
fn test_49_by_75_not_greater_than_2_by_3() {
f1 := fractions.fraction(49, 75)
f2 := fractions.fraction(2, 3)
assert !f1.gt(f2)
assert !f1.ge(f2)
}