math: faster factorial function
parent
a743ecaff9
commit
982496ffce
|
@ -7,7 +7,7 @@ module math
|
|||
|
||||
// NOTE
|
||||
// When adding a new function, please make sure it's in the right place.
|
||||
// All functions are sorted alphabetically.
|
||||
// All functions are sorted alphabetically.
|
||||
|
||||
const (
|
||||
E = 2.71828182845904523536028747135266249775724709369995957496696763
|
||||
|
@ -34,13 +34,13 @@ const (
|
|||
MinI16 = -1 << 15
|
||||
MaxI32 = (1<<31) - 1
|
||||
MinI32 = -1 << 31
|
||||
// MaxI64 = ((1<<63) - 1)
|
||||
// MinI64 = (-(1 << 63) )
|
||||
MaxU8 = (1<<8) - 1
|
||||
// MaxI64 = ((1<<63) - 1)
|
||||
// MinI64 = (-(1 << 63) )
|
||||
MaxU8 = (1<<8) - 1
|
||||
MaxU16 = (1<<16) - 1
|
||||
MaxU32 = (1<<32) - 1
|
||||
MaxU64 = (1<<64) - 1
|
||||
)
|
||||
)
|
||||
|
||||
// Returns the absolute value.
|
||||
pub fn abs(a f64) f64 {
|
||||
|
@ -76,7 +76,7 @@ pub fn cbrt(a f64) f64 {
|
|||
}
|
||||
|
||||
// ceil returns the nearest integer greater or equal to the provided value.
|
||||
pub fn ceil(a f64) f64 {
|
||||
pub fn ceil(a f64) int {
|
||||
return C.ceil(a)
|
||||
}
|
||||
|
||||
|
@ -131,15 +131,45 @@ pub fn exp2(a f64) f64 {
|
|||
}
|
||||
|
||||
// factorial calculates the factorial of the provided value.
|
||||
pub fn factorial(a int) i64 {
|
||||
if a < 0 {
|
||||
panic('factorial: Cannot find factorial of negative number')
|
||||
}
|
||||
mut prod := 1
|
||||
for i:= 0; i < a; i++ {
|
||||
prod *= (i+1)
|
||||
}
|
||||
return prod
|
||||
fn recursive_product( n int, current_number_ptr &int) int{
|
||||
mut m := n / 2
|
||||
if (m == 0){
|
||||
return *current_number_ptr += 2
|
||||
}
|
||||
if (n == 2){
|
||||
return (*current_number_ptr += 2) * (*current_number_ptr += 2)
|
||||
}
|
||||
return recursive_product((n - m), *current_number_ptr) * recursive_product(m, *current_number_ptr)
|
||||
}
|
||||
|
||||
pub fn factorial(n int) i64 {
|
||||
if n < 0 {
|
||||
panic('factorial: Cannot find factorial of negative number')
|
||||
}
|
||||
if n < 2 {
|
||||
return i64(1)
|
||||
}
|
||||
mut r := 1
|
||||
mut p := 1
|
||||
mut current_number := 1
|
||||
mut h := 0
|
||||
mut shift := 0
|
||||
mut high := 1
|
||||
mut len := high
|
||||
mut log2n := int(floor(log2(n)))
|
||||
for ;h != n; {
|
||||
shift += h
|
||||
h = n >> log2n
|
||||
log2n -= 1
|
||||
len = high
|
||||
high = (h - 1) | 1
|
||||
len = (high - len)/2
|
||||
if (len > 0){
|
||||
p *= recursive_product(len, ¤t_number)
|
||||
r *= p
|
||||
}
|
||||
}
|
||||
return i64((r << shift))
|
||||
}
|
||||
|
||||
// floor returns the nearest integer lower or equal of the provided value.
|
||||
|
|
|
@ -28,6 +28,7 @@ fn test_digits() {
|
|||
}
|
||||
|
||||
fn test_factorial() {
|
||||
assert math.factorial(12) == 479001600
|
||||
assert math.factorial(5) == 120
|
||||
assert math.factorial(0) == 1
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue