math: faster factorial function
parent
a743ecaff9
commit
982496ffce
|
@ -7,7 +7,7 @@ module math
|
||||||
|
|
||||||
// NOTE
|
// NOTE
|
||||||
// When adding a new function, please make sure it's in the right place.
|
// When adding a new function, please make sure it's in the right place.
|
||||||
// All functions are sorted alphabetically.
|
// All functions are sorted alphabetically.
|
||||||
|
|
||||||
const (
|
const (
|
||||||
E = 2.71828182845904523536028747135266249775724709369995957496696763
|
E = 2.71828182845904523536028747135266249775724709369995957496696763
|
||||||
|
@ -34,13 +34,13 @@ const (
|
||||||
MinI16 = -1 << 15
|
MinI16 = -1 << 15
|
||||||
MaxI32 = (1<<31) - 1
|
MaxI32 = (1<<31) - 1
|
||||||
MinI32 = -1 << 31
|
MinI32 = -1 << 31
|
||||||
// MaxI64 = ((1<<63) - 1)
|
// MaxI64 = ((1<<63) - 1)
|
||||||
// MinI64 = (-(1 << 63) )
|
// MinI64 = (-(1 << 63) )
|
||||||
MaxU8 = (1<<8) - 1
|
MaxU8 = (1<<8) - 1
|
||||||
MaxU16 = (1<<16) - 1
|
MaxU16 = (1<<16) - 1
|
||||||
MaxU32 = (1<<32) - 1
|
MaxU32 = (1<<32) - 1
|
||||||
MaxU64 = (1<<64) - 1
|
MaxU64 = (1<<64) - 1
|
||||||
)
|
)
|
||||||
|
|
||||||
// Returns the absolute value.
|
// Returns the absolute value.
|
||||||
pub fn abs(a f64) f64 {
|
pub fn abs(a f64) f64 {
|
||||||
|
@ -76,7 +76,7 @@ pub fn cbrt(a f64) f64 {
|
||||||
}
|
}
|
||||||
|
|
||||||
// ceil returns the nearest integer greater or equal to the provided value.
|
// ceil returns the nearest integer greater or equal to the provided value.
|
||||||
pub fn ceil(a f64) f64 {
|
pub fn ceil(a f64) int {
|
||||||
return C.ceil(a)
|
return C.ceil(a)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -131,15 +131,45 @@ pub fn exp2(a f64) f64 {
|
||||||
}
|
}
|
||||||
|
|
||||||
// factorial calculates the factorial of the provided value.
|
// factorial calculates the factorial of the provided value.
|
||||||
pub fn factorial(a int) i64 {
|
fn recursive_product( n int, current_number_ptr &int) int{
|
||||||
if a < 0 {
|
mut m := n / 2
|
||||||
panic('factorial: Cannot find factorial of negative number')
|
if (m == 0){
|
||||||
}
|
return *current_number_ptr += 2
|
||||||
mut prod := 1
|
}
|
||||||
for i:= 0; i < a; i++ {
|
if (n == 2){
|
||||||
prod *= (i+1)
|
return (*current_number_ptr += 2) * (*current_number_ptr += 2)
|
||||||
}
|
}
|
||||||
return prod
|
return recursive_product((n - m), *current_number_ptr) * recursive_product(m, *current_number_ptr)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn factorial(n int) i64 {
|
||||||
|
if n < 0 {
|
||||||
|
panic('factorial: Cannot find factorial of negative number')
|
||||||
|
}
|
||||||
|
if n < 2 {
|
||||||
|
return i64(1)
|
||||||
|
}
|
||||||
|
mut r := 1
|
||||||
|
mut p := 1
|
||||||
|
mut current_number := 1
|
||||||
|
mut h := 0
|
||||||
|
mut shift := 0
|
||||||
|
mut high := 1
|
||||||
|
mut len := high
|
||||||
|
mut log2n := int(floor(log2(n)))
|
||||||
|
for ;h != n; {
|
||||||
|
shift += h
|
||||||
|
h = n >> log2n
|
||||||
|
log2n -= 1
|
||||||
|
len = high
|
||||||
|
high = (h - 1) | 1
|
||||||
|
len = (high - len)/2
|
||||||
|
if (len > 0){
|
||||||
|
p *= recursive_product(len, ¤t_number)
|
||||||
|
r *= p
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return i64((r << shift))
|
||||||
}
|
}
|
||||||
|
|
||||||
// floor returns the nearest integer lower or equal of the provided value.
|
// floor returns the nearest integer lower or equal of the provided value.
|
||||||
|
|
|
@ -28,6 +28,7 @@ fn test_digits() {
|
||||||
}
|
}
|
||||||
|
|
||||||
fn test_factorial() {
|
fn test_factorial() {
|
||||||
|
assert math.factorial(12) == 479001600
|
||||||
assert math.factorial(5) == 120
|
assert math.factorial(5) == 120
|
||||||
assert math.factorial(0) == 1
|
assert math.factorial(0) == 1
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue