From 9e9935acbcc3546b789e635d2886bede056deb3e Mon Sep 17 00:00:00 2001 From: Alexander Medvednikov Date: Mon, 28 Oct 2019 16:33:32 +0300 Subject: [PATCH] math: make consts and structs public --- vlib/math/complex/complex.v | 68 ++++++++++++++++++------------------- vlib/math/const.v | 6 ++-- 2 files changed, 37 insertions(+), 37 deletions(-) diff --git a/vlib/math/complex/complex.v b/vlib/math/complex/complex.v index 0bed7dfc56..8f9c2c422e 100644 --- a/vlib/math/complex/complex.v +++ b/vlib/math/complex/complex.v @@ -4,9 +4,9 @@ module complex -import math +import math -struct Complex { +pub struct Complex { pub: re f64 im f64 @@ -17,7 +17,7 @@ pub fn complex(re f64, im f64) Complex { } // To String method -pub fn (c Complex) str() string { +pub fn (c Complex) str() string { mut out := '$c.re' out += if c.im >= 0 { '+$c.im' @@ -40,7 +40,7 @@ pub fn (c Complex) mod() f64 { // Complex Angle -pub fn (c Complex) angle() f64 { +pub fn (c Complex) angle() f64 { return math.atan2(c.im, c.re) } @@ -58,7 +58,7 @@ pub fn (c1 Complex) - (c2 Complex) Complex { // Currently Not Supported // pub fn (c1 Complex) * (c2 Complex) Complex { // return Complex{ -// (c1.re * c2.re) + ((c1.im * c2.im) * -1), +// (c1.re * c2.re) + ((c1.im * c2.im) * -1), // (c1.re * c2.im) + (c1.im * c2.re) // } // } @@ -67,8 +67,8 @@ pub fn (c1 Complex) - (c2 Complex) Complex { // Currently Not Supported // pub fn (c1 Complex) / (c2 Complex) Complex { // denom := (c2.re * c2.re) + (c2.im * c2.im) -// return Complex { -// ((c1.re * c2.re) + ((c1.im * -c2.im) * -1))/denom, +// return Complex { +// ((c1.re * c2.re) + ((c1.im * -c2.im) * -1))/denom, // ((c1.re * -c2.im) + (c1.im * c2.re))/denom // } // } @@ -86,7 +86,7 @@ pub fn (c1 Complex) subtract(c2 Complex) Complex { // Complex Multiplication c1.multiply(c2) pub fn (c1 Complex) multiply(c2 Complex) Complex { return Complex{ - (c1.re * c2.re) + ((c1.im * c2.im) * -1), + (c1.re * c2.re) + ((c1.im * c2.im) * -1), (c1.re * c2.im) + (c1.im * c2.re) } } @@ -94,8 +94,8 @@ pub fn (c1 Complex) multiply(c2 Complex) Complex { // Complex Division c1.divide(c2) pub fn (c1 Complex) divide(c2 Complex) Complex { denom := (c2.re * c2.re) + (c2.im * c2.im) - return Complex { - ((c1.re * c2.re) + ((c1.im * -c2.im) * -1)) / denom, + return Complex { + ((c1.re * c2.re) + ((c1.im * -c2.im) * -1)) / denom, ((c1.re * -c2.im) + (c1.im * c2.re)) / denom } } @@ -106,7 +106,7 @@ pub fn (c Complex) conjugate() Complex{ } // Complex Additive Inverse -// Based on +// Based on // http://tutorial.math.lamar.edu/Extras/ComplexPrimer/Arithmetic.aspx pub fn (c Complex) addinv() Complex { return Complex{-c.re, -c.im} @@ -121,7 +121,7 @@ pub fn (c Complex) mulinv() Complex { -c.im / (c.re * c.re + c.im * c.im) } } - + // Complex Power // Based on // https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers/multiplying-and-dividing-complex-numbers-in-polar-form/a/complex-number-polar-form-review @@ -134,25 +134,25 @@ pub fn (c Complex) pow(n f64) Complex { } } -// Complex nth root +// Complex nth root pub fn (c Complex) root(n f64) Complex { return c.pow(1.0 / n) } // Complex Exponential -// Using Euler's Identity +// Using Euler's Identity // Based on // https://www.math.wisc.edu/~angenent/Free-Lecture-Notes/freecomplexnumbers.pdf pub fn (c Complex) exp() Complex { a := math.exp(c.re) return Complex { - a * math.cos(c.im), + a * math.cos(c.im), a * math.sin(c.im) } } // Complex Natural Logarithm -// Based on +// Based on // http://www.chemistrylearning.com/logarithm-of-complex-number/ pub fn (c Complex) ln() Complex { return Complex { @@ -162,7 +162,7 @@ pub fn (c Complex) ln() Complex { } // Complex Log Base Complex -// Based on +// Based on // http://www.milefoot.com/math/complex/summaryops.htm pub fn (c Complex) log(base Complex) Complex { return base.ln().divide(c.ln()) @@ -184,7 +184,7 @@ pub fn (c Complex) cpow(p Complex) Complex { d := p.re * a + (1.0/2) * p.im * math.log(b) t1 := math.pow(b,p.re/2) * math.exp(-p.im*a) return Complex{ - t1 * math.cos(d), + t1 * math.cos(d), t1 * math.sin(d) } } @@ -238,7 +238,7 @@ pub fn (c Complex) csc() Complex { } // Complex Arc Sin / Sin Inverse -// Based on +// Based on // http://www.milefoot.com/math/complex/summaryops.htm pub fn (c Complex) asin() Complex { return complex(0,-1).multiply( @@ -254,7 +254,7 @@ pub fn (c Complex) asin() Complex { } // Complex Arc Consine / Consine Inverse -// Based on +// Based on // http://www.milefoot.com/math/complex/summaryops.htm pub fn (c Complex) acos() Complex { return complex(0,-1).multiply( @@ -271,7 +271,7 @@ pub fn (c Complex) acos() Complex { } // Complex Arc Tangent / Tangent Inverse -// Based on +// Based on // http://www.milefoot.com/math/complex/summaryops.htm pub fn (c Complex) atan() Complex { i := complex(0,1) @@ -285,21 +285,21 @@ pub fn (c Complex) atan() Complex { } // Complex Arc Cotangent / Cotangent Inverse -// Based on +// Based on // http://www.suitcaseofdreams.net/Inverse_Functions.htm pub fn (c Complex) acot() Complex { return complex(1,0).divide(c).atan() } // Complex Arc Secant / Secant Inverse -// Based on +// Based on // http://www.suitcaseofdreams.net/Inverse_Functions.htm pub fn (c Complex) asec() Complex { return complex(1,0).divide(c).acos() } // Complex Arc Cosecant / Cosecant Inverse -// Based on +// Based on // http://www.suitcaseofdreams.net/Inverse_Functions.htm pub fn (c Complex) acsc() Complex { return complex(1,0).divide(c).asin() @@ -354,7 +354,7 @@ pub fn (c Complex) csch() Complex { } // Complex Hyperbolic Arc Sin / Sin Inverse -// Based on +// Based on // http://www.suitcaseofdreams.net/Inverse__Hyperbolic_Functions.htm pub fn (c Complex) asinh() Complex { return c.add( @@ -365,7 +365,7 @@ pub fn (c Complex) asinh() Complex { } // Complex Hyperbolic Arc Consine / Consine Inverse -// Based on +// Based on // http://www.suitcaseofdreams.net/Inverse__Hyperbolic_Functions.htm pub fn (c Complex) acosh() Complex { if(c.re > 1) { @@ -389,7 +389,7 @@ pub fn (c Complex) acosh() Complex { } // Complex Hyperbolic Arc Tangent / Tangent Inverse -// Based on +// Based on // http://www.suitcaseofdreams.net/Inverse__Hyperbolic_Functions.htm pub fn (c Complex) atanh() Complex { one := complex(1,0) @@ -419,7 +419,7 @@ pub fn (c Complex) atanh() Complex { } // Complex Hyperbolic Arc Cotangent / Cotangent Inverse -// Based on +// Based on // http://www.suitcaseofdreams.net/Inverse__Hyperbolic_Functions.htm pub fn (c Complex) acoth() Complex { one := complex(1,0) @@ -449,7 +449,7 @@ pub fn (c Complex) acoth() Complex { } // Complex Hyperbolic Arc Secant / Secant Inverse -// Based on +// Based on // http://www.suitcaseofdreams.net/Inverse__Hyperbolic_Functions.htm // For certain scenarios, Result mismatch in crossverification with Wolfram Alpha - analysis pending // pub fn (c Complex) asech() Complex { @@ -457,7 +457,7 @@ pub fn (c Complex) acoth() Complex { // if(c.re < -1.0) { // return one.subtract( // one.subtract( - // c.pow(2) + // c.pow(2) // ) // .root(2) // ) @@ -467,7 +467,7 @@ pub fn (c Complex) acoth() Complex { // else { // return one.add( // one.subtract( - // c.pow(2) + // c.pow(2) // ) // .root(2) // ) @@ -477,14 +477,14 @@ pub fn (c Complex) acoth() Complex { // } // Complex Hyperbolic Arc Cosecant / Cosecant Inverse -// Based on +// Based on // http://www.suitcaseofdreams.net/Inverse__Hyperbolic_Functions.htm pub fn (c Complex) acsch() Complex { one := complex(1,0) if(c.re < 0) { return one.subtract( one.add( - c.pow(2) + c.pow(2) ) .root(2) ) @@ -493,7 +493,7 @@ pub fn (c Complex) acsch() Complex { } else { return one.add( one.add( - c.pow(2) + c.pow(2) ) .root(2) ) diff --git a/vlib/math/const.v b/vlib/math/const.v index 2d29a19f17..33f3dd7ff9 100644 --- a/vlib/math/const.v +++ b/vlib/math/const.v @@ -4,7 +4,7 @@ module math -const ( +pub const ( e = 2.71828182845904523536028747135266249775724709369995957496696763 pi = 3.14159265358979323846264338327950288419716939937510582097494459 phi = 1.61803398874989484820458683436563811772030917980576286213544862 @@ -25,7 +25,7 @@ const ( // Floating-point limit values // max is the largest finite value representable by the type. // smallest_non_zero is the smallest positive, non-zero value representable by the type. -const ( +pub const ( max_f32 = 3.40282346638528859811704183484516925440e+38 // 2**127 * (2**24 - 1) / 2**23 smallest_non_zero_f32 = 1.401298464324817070923729583289916131280e-45 // 1 / 2**(127 - 1 + 23) @@ -34,7 +34,7 @@ const ( ) // Integer limit values -const ( +pub const ( max_i8 = 127 min_i8 = -128 max_i16 = 32767