rand: extend PRNG interface, add buffering support (#13608)

pull/13618/head
Subhomoy Haldar 2022-02-28 16:47:54 +05:30 committed by GitHub
parent efeb3e04da
commit a0d9e6e1c2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 380 additions and 110 deletions

View File

@ -44,6 +44,8 @@ C++ functions for MT19937, with initialization improved 2002/2/10.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
*/
pub const seed_len = 2
const (
nn = 312
mm = 156
@ -57,10 +59,10 @@ const (
// **NOTE**: The RNG is not seeded when instantiated so remember to seed it before use.
pub struct MT19937RNG {
mut:
state []u64 = []u64{len: mt19937.nn}
mti int = mt19937.nn
next_rnd u32
has_next bool
state []u64 = []u64{len: mt19937.nn}
mti int = mt19937.nn
bytes_left int
buffer u64
}
// calculate_state returns a random state array calculated from the `seed_data`.
@ -85,21 +87,55 @@ pub fn (mut rng MT19937RNG) seed(seed_data []u32) {
rng.state = calculate_state(seed_data, mut rng.state)
rng.state = calculate_state(seed_data, mut rng.state)
rng.mti = mt19937.nn
rng.next_rnd = 0
rng.has_next = false
rng.bytes_left = 0
rng.buffer = 0
}
// byte returns a uniformly distributed pseudorandom 8-bit unsigned positive `byte`.
[inline]
pub fn (mut rng MT19937RNG) byte() byte {
if rng.bytes_left >= 1 {
rng.bytes_left -= 1
value := byte(rng.buffer)
rng.buffer >>= 8
return value
}
rng.buffer = rng.u64()
rng.bytes_left = 7
value := byte(rng.buffer)
rng.buffer >>= 8
return value
}
// u16 returns a pseudorandom 16bit int in range `[0, 2¹⁶)`.
[inline]
pub fn (mut rng MT19937RNG) u16() u16 {
if rng.bytes_left >= 2 {
rng.bytes_left -= 2
value := u16(rng.buffer)
rng.buffer >>= 16
return value
}
ans := rng.u64()
rng.buffer = ans >> 16
rng.bytes_left = 6
return u16(ans)
}
// u32 returns a pseudorandom 32bit int in range `[0, 2³²)`.
[inline]
pub fn (mut rng MT19937RNG) u32() u32 {
if rng.has_next {
rng.has_next = false
return rng.next_rnd
// Can we take a whole u32 out of the buffer?
if rng.bytes_left >= 4 {
rng.bytes_left -= 4
value := u32(rng.buffer)
rng.buffer >>= 32
return value
}
ans := rng.u64()
rng.next_rnd = u32(ans >> 32)
rng.has_next = true
return u32(ans & 0xffffffff)
rng.buffer = ans >> 32
rng.bytes_left = 4
return u32(ans)
}
// u64 returns a pseudorandom 64bit int in range `[0, 2⁶⁴)`.
@ -131,6 +167,12 @@ pub fn (mut rng MT19937RNG) u64() u64 {
return x
}
// block_size returns the number of bits that the RNG can produce in a single iteration.
[inline]
pub fn (mut rng MT19937RNG) block_size() int {
return 64
}
// free should be called when the generator is no longer needed
[unsafe]
pub fn (mut rng MT19937RNG) free() {

View File

@ -5,10 +5,14 @@ module musl
import rand.seed
pub const seed_len = 1
// MuslRNG ported from https://git.musl-libc.org/cgit/musl/tree/src/prng/rand_r.c
pub struct MuslRNG {
mut:
state u32 = seed.time_seed_32()
state u32 = seed.time_seed_32()
bytes_left int
buffer u32
}
// seed sets the current random state based on `seed_data`.
@ -19,6 +23,39 @@ pub fn (mut rng MuslRNG) seed(seed_data []u32) {
exit(1)
}
rng.state = seed_data[0]
rng.bytes_left = 0
rng.buffer = 0
}
// byte returns a uniformly distributed pseudorandom 8-bit unsigned positive `byte`.
[inline]
fn (mut rng MuslRNG) byte() byte {
if rng.bytes_left >= 1 {
rng.bytes_left -= 1
value := byte(rng.buffer)
rng.buffer >>= 8
return value
}
rng.buffer = rng.u32()
rng.bytes_left = 3
value := byte(rng.buffer)
rng.buffer >>= 8
return value
}
// u16 returns a pseudorandom 16-bit unsigned integer (`u16`).
[inline]
pub fn (mut rng MuslRNG) u16() u16 {
if rng.bytes_left >= 2 {
rng.bytes_left -= 2
value := u16(rng.buffer)
rng.buffer >>= 16
return value
}
ans := rng.u32()
rng.buffer = ans >> 16
rng.bytes_left = 2
return u16(ans)
}
// temper returns a tempered value based on `prev` value.
@ -33,8 +70,7 @@ fn temper(prev u32) u32 {
}
// u32 returns a pseudorandom 32-bit unsigned integer (`u32`).
[inline]
pub fn (mut rng MuslRNG) u32() u32 {
fn (mut rng MuslRNG) u32() u32 {
rng.state = rng.state * 1103515245 + 12345
// We are not dividing by 2 (or shifting right by 1)
// because we want all 32-bits of random data
@ -47,6 +83,12 @@ pub fn (mut rng MuslRNG) u64() u64 {
return u64(rng.u32()) | (u64(rng.u32()) << 32)
}
// block_size returns the number of bits that the RNG can produce in a single iteration.
[inline]
pub fn (mut rng MuslRNG) block_size() int {
return 32
}
// free should be called when the generator is no longer needed
[unsafe]
pub fn (mut rng MuslRNG) free() {

View File

@ -4,15 +4,18 @@
module pcg32
import rand.seed
import rand.constants
pub const seed_len = 4
// PCG32RNG ported from http://www.pcg-random.org/download.html,
// https://github.com/imneme/pcg-c-basic/blob/master/pcg_basic.c, and
// https://github.com/imneme/pcg-c-basic/blob/master/pcg_basic.h
pub struct PCG32RNG {
mut:
state u64 = u64(0x853c49e6748fea9b) ^ seed.time_seed_64()
inc u64 = u64(0xda3e39cb94b95bdb) ^ seed.time_seed_64()
state u64 = u64(0x853c49e6748fea9b) ^ seed.time_seed_64()
inc u64 = u64(0xda3e39cb94b95bdb) ^ seed.time_seed_64()
bytes_left int
buffer u32
}
// seed seeds the PCG32RNG with 4 `u32` values.
@ -30,11 +33,44 @@ pub fn (mut rng PCG32RNG) seed(seed_data []u32) {
rng.u32()
rng.state += init_state
rng.u32()
rng.bytes_left = 0
rng.buffer = 0
}
// byte returns a uniformly distributed pseudorandom 8-bit unsigned positive `byte`.
[inline]
fn (mut rng PCG32RNG) byte() byte {
if rng.bytes_left >= 1 {
rng.bytes_left -= 1
value := byte(rng.buffer)
rng.buffer >>= 8
return value
}
rng.buffer = rng.u32()
rng.bytes_left = 3
value := byte(rng.buffer)
rng.buffer >>= 8
return value
}
// u16 returns a pseudorandom 16-bit unsigned integer (`u16`).
[inline]
pub fn (mut rng PCG32RNG) u16() u16 {
if rng.bytes_left >= 2 {
rng.bytes_left -= 2
value := u16(rng.buffer)
rng.buffer >>= 16
return value
}
ans := rng.u32()
rng.buffer = ans >> 16
rng.bytes_left = 2
return u16(ans)
}
// u32 returns a pseudorandom unsigned `u32`.
[inline]
pub fn (mut rng PCG32RNG) u32() u32 {
fn (mut rng PCG32RNG) u32() u32 {
oldstate := rng.state
rng.state = oldstate * (6364136223846793005) + rng.inc
xorshifted := u32(((oldstate >> u64(18)) ^ oldstate) >> u64(27))
@ -48,6 +84,12 @@ pub fn (mut rng PCG32RNG) u64() u64 {
return u64(rng.u32()) | (u64(rng.u32()) << 32)
}
// block_size returns the number of bits that the RNG can produce in a single iteration.
[inline]
pub fn (mut rng PCG32RNG) block_size() int {
return 32
}
// free should be called when the generator is no longer needed
[unsafe]
pub fn (mut rng PCG32RNG) free() {

View File

@ -147,16 +147,44 @@ fn init() {
C.atexit(deinit)
}
// read fills in `buf` a maximum of `buf.len` random bytes
pub fn read(mut buf []byte) {
fn read_32(mut rng PRNG, mut buf []byte) {
p32 := unsafe { &u32(buf.data) }
u32s := buf.len / 4
for i in 0 .. u32s {
unsafe {
*(p32 + i) = rng.u32()
}
}
for i in u32s * 4 .. buf.len {
buf[i] = rng.byte()
}
}
fn read_64(mut rng PRNG, mut buf []byte) {
p64 := unsafe { &u64(buf.data) }
u64s := buf.len / 8
for i in 0 .. u64s {
unsafe {
*(p64 + i) = default_rng.u64()
*(p64 + i) = rng.u64()
}
}
for i in u64s * 8 .. buf.len {
buf[i] = byte(default_rng.u32())
buf[i] = rng.byte()
}
}
fn read_internal(mut rng PRNG, mut buf []byte) {
match rng.block_size() {
32 {
read_32(mut rng, mut buf)
}
64 {
read_64(mut rng, mut buf)
}
else {
for i in 0 .. buf.len {
buf[i] = rng.byte()
}
}
}
}

View File

@ -66,9 +66,8 @@ pub fn ulid_at_millisecond(unix_time_milli u64) string {
return res
}
// read fills in `buf` a maximum of `buf.len` random bytes
pub fn read(mut buf []byte) {
fn read_internal(mut rng PRNG, mut buf []byte) {
for i in 0 .. buf.len {
buf[i] = byte(default_rng.u32())
buf[i] = rng.byte()
}
}

View File

@ -15,53 +15,25 @@ import rand.wyrand
pub interface PRNG {
mut:
seed(seed_data []u32)
// TODO: Support buffering for bytes
// byte() byte
// bytes(bytes_needed int) ?[]byte
// u16() u16
byte() byte
u16() u16
u32() u32
u64() u64
block_size() int
free()
}
// byte returns a uniformly distributed pseudorandom 8-bit unsigned positive `byte`.
[inline]
pub fn (mut rng PRNG) byte() byte {
// TODO: Reimplement for all PRNGs efficiently
return byte(rng.u32() & 0xff)
}
// bytes returns a buffer of `bytes_needed` random bytes.
// bytes returns a buffer of `bytes_needed` random bytes
[inline]
pub fn (mut rng PRNG) bytes(bytes_needed int) ?[]byte {
// TODO: Reimplement for all PRNGs efficiently
if bytes_needed < 0 {
return error('can not read < 0 random bytes')
}
mut res := []byte{cap: bytes_needed}
mut remaining := bytes_needed
for remaining > 8 {
mut value := rng.u64()
for _ in 0 .. 8 {
res << byte(value & 0xff)
value >>= 8
}
remaining -= 8
}
for remaining > 4 {
mut value := rng.u32()
for _ in 0 .. 4 {
res << byte(value & 0xff)
value >>= 8
}
remaining -= 4
}
for remaining > 0 {
res << rng.byte()
remaining -= 1
}
return res
mut buffer := []byte{len: bytes_needed}
read_internal(mut rng, mut buffer)
return buffer
}
// u32n returns a uniformly distributed pseudorandom 32-bit signed positive `u32` in range `[0, max)`.
@ -140,6 +112,18 @@ pub fn (mut rng PRNG) u64_in_range(min u64, max u64) ?u64 {
return min + rng.u64n(max - min) ?
}
// i8 returns a (possibly negative) pseudorandom 8-bit `i8`.
[inline]
pub fn (mut rng PRNG) i8() i8 {
return i8(rng.byte())
}
// i16 returns a (possibly negative) pseudorandom 16-bit `i16`.
[inline]
pub fn (mut rng PRNG) i16() i16 {
return i16(rng.u16())
}
// int returns a (possibly negative) pseudorandom 32-bit `int`.
[inline]
pub fn (mut rng PRNG) int() int {
@ -213,38 +197,38 @@ pub fn (mut rng PRNG) f64() f64 {
return f64(rng.u64()) / constants.max_u64_as_f64
}
// f32n returns a pseudorandom `f32` value in range `[0, max)`.
// f32n returns a pseudorandom `f32` value in range `[0, max]`.
[inline]
pub fn (mut rng PRNG) f32n(max f32) ?f32 {
if max <= 0 {
return error('max has to be positive.')
if max < 0 {
return error('max has to be non-negative.')
}
return rng.f32() * max
}
// f64n returns a pseudorandom `f64` value in range `[0, max)`.
// f64n returns a pseudorandom `f64` value in range `[0, max]`.
[inline]
pub fn (mut rng PRNG) f64n(max f64) ?f64 {
if max <= 0 {
return error('max has to be positive.')
if max < 0 {
return error('max has to be non-negative.')
}
return rng.f64() * max
}
// f32_in_range returns a pseudorandom `f32` in range `[min, max)`.
// f32_in_range returns a pseudorandom `f32` in range `[min, max]`.
[inline]
pub fn (mut rng PRNG) f32_in_range(min f32, max f32) ?f32 {
if max <= min {
return error('max must be greater than min')
if max < min {
return error('max must be greater than or equal to min')
}
return min + rng.f32n(max - min) ?
}
// i64_in_range returns a pseudorandom `i64` in range `[min, max)`.
// i64_in_range returns a pseudorandom `i64` in range `[min, max]`.
[inline]
pub fn (mut rng PRNG) f64_in_range(min f64, max f64) ?f64 {
if max <= min {
return error('max must be greater than min')
if max < min {
return error('max must be greater than or equal to min')
}
return min + rng.f64n(max - min) ?
}
@ -311,6 +295,11 @@ pub fn u64_in_range(min u64, max u64) ?u64 {
return default_rng.u64_in_range(min, max)
}
// i16 returns a uniformly distributed pseudorandom 16-bit signed (possibly negative) `i16`.
pub fn i16() i16 {
return default_rng.i16()
}
// int returns a uniformly distributed pseudorandom 32-bit signed (possibly negative) `int`.
pub fn int() int {
return default_rng.int()
@ -392,6 +381,11 @@ pub fn bytes(bytes_needed int) ?[]byte {
return default_rng.bytes(bytes_needed)
}
// read fills in `buf` a maximum of `buf.len` random bytes
pub fn read(mut buf []byte) {
read_internal(mut default_rng, mut buf)
}
const (
english_letters = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
hex_chars = 'abcdef0123456789'

View File

@ -4,14 +4,15 @@
module splitmix64
import rand.seed
import rand.constants
pub const seed_len = 2
// SplitMix64RNG ported from http://xoshiro.di.unimi.it/splitmix64.c
pub struct SplitMix64RNG {
mut:
state u64 = seed.time_seed_64()
has_extra bool
extra u32
state u64 = seed.time_seed_64()
bytes_left int
buffer u64
}
// seed sets the seed of the accepting SplitMix64RNG to the given data
@ -22,25 +23,57 @@ pub fn (mut rng SplitMix64RNG) seed(seed_data []u32) {
exit(1)
}
rng.state = seed_data[0] | (u64(seed_data[1]) << 32)
rng.has_extra = false
rng.bytes_left = 0
rng.buffer = 0
}
// u32 updates the PRNG state and returns the next pseudorandom `u32`.
// byte returns a uniformly distributed pseudorandom 8-bit unsigned positive `byte`.
[inline]
pub fn (mut rng SplitMix64RNG) byte() byte {
if rng.bytes_left >= 1 {
rng.bytes_left -= 1
value := byte(rng.buffer)
rng.buffer >>= 8
return value
}
rng.buffer = rng.u64()
rng.bytes_left = 7
value := byte(rng.buffer)
rng.buffer >>= 8
return value
}
// u16 returns a pseudorandom 16bit int in range `[0, 2¹⁶)`.
[inline]
pub fn (mut rng SplitMix64RNG) u16() u16 {
if rng.bytes_left >= 2 {
rng.bytes_left -= 2
value := u16(rng.buffer)
rng.buffer >>= 16
return value
}
ans := rng.u64()
rng.buffer = ans >> 16
rng.bytes_left = 6
return u16(ans)
}
// u32 returns a pseudorandom 32bit int in range `[0, 2³²)`.
[inline]
pub fn (mut rng SplitMix64RNG) u32() u32 {
if rng.has_extra {
rng.has_extra = false
return rng.extra
if rng.bytes_left >= 4 {
rng.bytes_left -= 4
value := u32(rng.buffer)
rng.buffer >>= 32
return value
}
full_value := rng.u64()
lower := u32(full_value & constants.lower_mask)
upper := u32(full_value >> 32)
rng.extra = upper
rng.has_extra = true
return lower
ans := rng.u64()
rng.buffer = ans >> 32
rng.bytes_left = 4
return u32(ans)
}
// u64 updates the PRNG state and returns the next pseudorandom `u64`.
// u64 returns a pseudorandom 64bit int in range `[0, 2⁶⁴)`.
[inline]
pub fn (mut rng SplitMix64RNG) u64() u64 {
rng.state += (0x9e3779b97f4a7c15)
@ -50,6 +83,12 @@ pub fn (mut rng SplitMix64RNG) u64() u64 {
return z ^ (z >> (31))
}
// block_size returns the number of bits that the RNG can produce in a single iteration.
[inline]
pub fn (mut rng SplitMix64RNG) block_size() int {
return 64
}
// free should be called when the generator is no longer needed
[unsafe]
pub fn (mut rng SplitMix64RNG) free() {

View File

@ -16,9 +16,14 @@ import rand.seed
// 2147483647. The repetition period also varies wildly. In order to provide more entropy
// without altering the underlying algorithm too much, this implementation simply
// requests for more random bits until the necessary width for the integers is achieved.
pub const seed_len = 1
const (
rand_limit = u64(C.RAND_MAX)
rand_bitsize = bits.len_64(rand_limit)
rand_bytesize = rand_bitsize / 8
u16_iter_count = calculate_iterations_for(16)
u32_iter_count = calculate_iterations_for(32)
u64_iter_count = calculate_iterations_for(64)
)
@ -32,7 +37,9 @@ fn calculate_iterations_for(bits int) int {
// SysRNG is the PRNG provided by default in the libc implementiation that V uses.
pub struct SysRNG {
mut:
seed u32 = seed.time_seed_32()
seed u32 = seed.time_seed_32()
buffer int
bytes_left int
}
// r.seed() sets the seed of the accepting SysRNG to the given data.
@ -55,7 +62,39 @@ pub fn (r SysRNG) default_rand() int {
return C.rand()
}
// r.u32() returns a pseudorandom u32 value less than 2^32
// byte returns a uniformly distributed pseudorandom 8-bit unsigned positive `byte`.
[inline]
pub fn (mut r SysRNG) byte() byte {
if r.bytes_left >= 1 {
r.bytes_left -= 1
value := byte(r.buffer)
r.buffer >>= 8
return value
}
r.buffer = r.default_rand()
r.bytes_left = sys.rand_bytesize - 1
value := byte(r.buffer)
r.buffer >>= 8
return value
}
// u16 returns a uniformly distributed pseudorandom 16-bit unsigned positive `u16`.
[inline]
pub fn (mut r SysRNG) u16() u16 {
if r.bytes_left >= 2 {
r.bytes_left -= 2
value := u16(r.buffer)
r.buffer >>= 16
return value
}
mut result := u16(C.rand())
for i in 1 .. sys.u16_iter_count {
result = result ^ (u16(C.rand()) << (sys.rand_bitsize * i))
}
return result
}
// u32 returns a uniformly distributed pseudorandom 32-bit unsigned positive `u32`.
[inline]
pub fn (r SysRNG) u32() u32 {
mut result := u32(C.rand())
@ -65,7 +104,7 @@ pub fn (r SysRNG) u32() u32 {
return result
}
// r.u64() returns a pseudorandom u64 value less than 2^64
// u64 returns a uniformly distributed pseudorandom 64-bit unsigned positive `u64`.
[inline]
pub fn (r SysRNG) u64() u64 {
mut result := u64(C.rand())
@ -75,6 +114,12 @@ pub fn (r SysRNG) u64() u64 {
return result
}
// block_size returns the number of bits that the RNG can produce in a single iteration.
[inline]
pub fn (r SysRNG) block_size() int {
return sys.rand_bitsize
}
// free should be called when the generator is no longer needed
[unsafe]
pub fn (mut rng SysRNG) free() {

View File

@ -3,9 +3,8 @@
// that can be found in the LICENSE file.
module wyrand
import rand.seed
import rand.constants
import hash
import rand.seed
// Redefinition of some constants that we will need for pseudorandom number generation.
const (
@ -16,9 +15,9 @@ const (
// WyRandRNG is a RNG based on the WyHash hashing algorithm.
pub struct WyRandRNG {
mut:
state u64 = seed.time_seed_64()
has_extra bool
extra u32
state u64 = seed.time_seed_64()
bytes_left int
buffer u64
}
// seed sets the seed, needs only two `u32`s in little-endian format as [lower, higher].
@ -28,25 +27,59 @@ pub fn (mut rng WyRandRNG) seed(seed_data []u32) {
exit(1)
}
rng.state = seed_data[0] | (u64(seed_data[1]) << 32)
rng.has_extra = false
rng.bytes_left = 0
rng.buffer = 0
}
// u32 updates the PRNG state and returns the next pseudorandom `u32`.
// byte returns a uniformly distributed pseudorandom 8-bit unsigned positive `byte`.
[inline]
pub fn (mut rng WyRandRNG) byte() byte {
// Can we extract a value from the buffer?
if rng.bytes_left >= 1 {
rng.bytes_left -= 1
value := byte(rng.buffer)
rng.buffer >>= 8
return value
}
// Add a new value to the buffer
rng.buffer = rng.u64()
rng.bytes_left = 7
value := byte(rng.buffer)
rng.buffer >>= 8
return value
}
// u16 returns a pseudorandom 16bit int in range `[0, 2¹⁶)`.
[inline]
pub fn (mut rng WyRandRNG) u16() u16 {
if rng.bytes_left >= 2 {
rng.bytes_left -= 2
value := u16(rng.buffer)
rng.buffer >>= 16
return value
}
ans := rng.u64()
rng.buffer = ans >> 16
rng.bytes_left = 6
return u16(ans)
}
// u32 returns a pseudorandom 32bit int in range `[0, 2³²)`.
[inline]
pub fn (mut rng WyRandRNG) u32() u32 {
if rng.has_extra {
rng.has_extra = false
return rng.extra
if rng.bytes_left >= 4 {
rng.bytes_left -= 4
value := u32(rng.buffer)
rng.buffer >>= 32
return value
}
full_value := rng.u64()
lower := u32(full_value & constants.lower_mask)
upper := u32(full_value >> 32)
rng.extra = upper
rng.has_extra = true
return lower
ans := rng.u64()
rng.buffer = ans >> 32
rng.bytes_left = 4
return u32(ans)
}
// u64 updates the PRNG state and returns the next pseudorandom `u64`.
// u64 returns a pseudorandom 64bit int in range `[0, 2⁶⁴)`.
[inline]
pub fn (mut rng WyRandRNG) u64() u64 {
unsafe {
@ -57,3 +90,9 @@ pub fn (mut rng WyRandRNG) u64() u64 {
}
return 0
}
// block_size returns the number of bits that the RNG can produce in a single iteration.
[inline]
pub fn (mut rng WyRandRNG) block_size() int {
return 64
}