run vfmt on math and sha; add vfmt check to test-compiler
parent
9198285688
commit
a251db068f
|
@ -8,12 +8,11 @@ Output: 1.274224153
|
|||
|
||||
Time: 11.67s user 0.02s system 99% cpu 11.721 total
|
||||
*/
|
||||
|
||||
module main
|
||||
|
||||
import math
|
||||
import os
|
||||
|
||||
|
||||
fn evala(i, j int) int {
|
||||
return ((i + j) * (i + j + 1) / 2 + i + 1)
|
||||
}
|
||||
|
@ -45,10 +44,8 @@ fn a_times_transp(v mut []f64, u []f64) {
|
|||
}
|
||||
|
||||
fn main() {
|
||||
|
||||
args := os.args
|
||||
mut n := int(0)
|
||||
|
||||
if args.len == 2 {
|
||||
n = args[1].int()
|
||||
}
|
||||
|
@ -57,22 +54,17 @@ fn main() {
|
|||
}
|
||||
mut u := [f64(1.0)].repeat(n)
|
||||
mut v := [f64(1.0)].repeat(n)
|
||||
|
||||
for i := 0; i < 10; i++ {
|
||||
a_times_transp(mut v, u)
|
||||
a_times_transp(mut u, v)
|
||||
}
|
||||
|
||||
mut vbv := f64(0)
|
||||
mut vv := f64(0)
|
||||
|
||||
for i := 0; i < n; i++ {
|
||||
vbv += u[i] * v[i]
|
||||
vv += v[i] * v[i]
|
||||
}
|
||||
ans := math.sqrt(vbv / vv)
|
||||
|
||||
println('${ans:0.9f}')
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
|
|
@ -18,6 +18,12 @@ fn main() {
|
|||
}
|
||||
|
||||
fn v_test_compiler(vargs string){
|
||||
v_test_compiler2(vargs)
|
||||
//make_sure_vfmt_was_run()
|
||||
}
|
||||
|
||||
fn v_test_compiler2(vargs string){
|
||||
|
||||
vexe := testing.vexe_path()
|
||||
parent_dir := os.dir(vexe)
|
||||
testing.vlib_should_be_present( parent_dir )
|
||||
|
@ -74,6 +80,8 @@ fn v_test_compiler(vargs string){
|
|||
vmark.stop()
|
||||
eprintln( 'Installing a v module took: ' + vmark.total_duration().str() + 'ms')
|
||||
|
||||
make_sure_vfmt_was_run()
|
||||
|
||||
if building_tools_failed ||
|
||||
compiler_test_session.failed ||
|
||||
building_examples_failed ||
|
||||
|
@ -82,3 +90,13 @@ fn v_test_compiler(vargs string){
|
|||
}
|
||||
|
||||
}
|
||||
|
||||
fn make_sure_vfmt_was_run() {
|
||||
files := os.walk_ext('.', '_test.v')
|
||||
for file in files {
|
||||
println(file)
|
||||
os.exec('./vfmt $file') or {
|
||||
println('$file failed')
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -2513,7 +2513,7 @@ fn (p mut Parser) array_init() string {
|
|||
const_name := p.prepend_mod(p.lit)
|
||||
if p.table.known_const(const_name) {
|
||||
c := p.table.find_const(const_name) or {
|
||||
// p.error('unknown const `$p.lit`')
|
||||
p.error('unknown const `$const_name`')
|
||||
exit(1)
|
||||
}
|
||||
if c.typ == 'int' && p.peek() == .rsbr {
|
||||
|
@ -2582,8 +2582,9 @@ fn (p mut Parser) array_init() string {
|
|||
}
|
||||
if p.tok != .rsbr && p.tok != .semicolon {
|
||||
p.gen(', ')
|
||||
line_nr := p.tok
|
||||
p.check(.comma)
|
||||
p.fspace()
|
||||
p.fspace_or_newline()
|
||||
}
|
||||
i++
|
||||
// Repeat (a = [0;5] )
|
||||
|
|
|
@ -2,7 +2,6 @@ module main
|
|||
|
||||
import os
|
||||
import term
|
||||
|
||||
// //////////////////////////////////////////////////////////////////
|
||||
// / This file will get compiled as part of the main program,
|
||||
// / for a _test.v file.
|
||||
|
@ -11,19 +10,20 @@ import term
|
|||
// / customizing the look & feel of the assertions results easier,
|
||||
// / since it is done in normal V code, instead of in embedded C ...
|
||||
// //////////////////////////////////////////////////////////////////
|
||||
|
||||
fn cb_assertion_failed(filename string, line int, sourceline string, funcname string) {
|
||||
color_on := term.can_show_color_on_stderr()
|
||||
use_relative_paths := match os.getenv('VERROR_PATHS') {
|
||||
'absolute' { false }
|
||||
else { true }
|
||||
'absolute'{
|
||||
false
|
||||
}
|
||||
else {
|
||||
true}}
|
||||
final_filename := if use_relative_paths { filename } else { os.realpath(filename) }
|
||||
final_funcname := funcname.replace('main__', '').replace('__', '.')
|
||||
|
||||
mut fail_message := 'FAILED assertion'
|
||||
if color_on { fail_message = term.bold(term.red(fail_message)) }
|
||||
|
||||
if color_on {
|
||||
fail_message = term.bold(term.red(fail_message))
|
||||
}
|
||||
eprintln('$final_filename:$line: $fail_message')
|
||||
eprintln('Function: $final_funcname')
|
||||
eprintln('Source : $sourceline')
|
||||
|
@ -33,3 +33,4 @@ fn cb_assertion_ok(filename string, line int, sourceline string, funcname string
|
|||
// do nothing for now on an OK assertion
|
||||
// println('OK ${line:5d}|$sourceline ')
|
||||
}
|
||||
|
||||
|
|
|
@ -52,6 +52,19 @@ fn (p mut Parser) fspace() {
|
|||
p.fgen(' ')
|
||||
}
|
||||
|
||||
[if vfmt]
|
||||
fn (p mut Parser) fspace_or_newline() {
|
||||
if p.first_pass() {
|
||||
return
|
||||
}
|
||||
if p.token_idx >= 2 && p.tokens[p.token_idx-1].line_nr !=
|
||||
p.tokens[p.token_idx-2].line_nr {
|
||||
p.fgen_nl()
|
||||
} else {
|
||||
p.fgen(' ')
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
[if vfmt]
|
||||
fn (p mut Parser) fgenln(s string) {
|
||||
|
|
|
@ -21,3 +21,4 @@ pub enum Hash {
|
|||
blake2b_384
|
||||
blake2b_512
|
||||
}
|
||||
|
||||
|
|
|
@ -1,13 +1,10 @@
|
|||
// Copyright (c) 2019 Alexander Medvednikov. All rights reserved.
|
||||
// Use of this source code is governed by an MIT license
|
||||
// that can be found in the LICENSE file.
|
||||
|
||||
// Package sha512 implements the SHA-384, SHA-512, SHA-512/224, and SHA-512/256
|
||||
// hash algorithms as defined in FIPS 180-4.
|
||||
|
||||
// Based off: https://github.com/golang/go/tree/master/src/crypto/sha512
|
||||
// Last commit: https://github.com/golang/go/commit/3ce865d7a0b88714cc433454ae2370a105210c01
|
||||
|
||||
module sha512
|
||||
|
||||
import (
|
||||
|
@ -64,7 +61,6 @@ const (
|
|||
init6_384 = 0xdb0c2e0d64f98fa7
|
||||
init7_384 = 0x47b5481dbefa4fa4
|
||||
)
|
||||
|
||||
// digest represents the partial evaluation of a checksum.
|
||||
struct Digest {
|
||||
mut:
|
||||
|
@ -118,15 +114,16 @@ fn (d mut Digest) reset() {
|
|||
d.h[5] = init5
|
||||
d.h[6] = init6
|
||||
d.h[7] = init7
|
||||
}
|
||||
}
|
||||
}}
|
||||
d.nx = 0
|
||||
d.len = 0
|
||||
}
|
||||
|
||||
// internal
|
||||
fn new_digest(hash crypto.Hash) &Digest {
|
||||
mut d := &Digest{function: hash}
|
||||
mut d := &Digest{
|
||||
function: hash
|
||||
}
|
||||
d.reset()
|
||||
return d
|
||||
}
|
||||
|
@ -164,7 +161,8 @@ fn (d mut Digest) write(p_ []byte) int {
|
|||
}
|
||||
if n >= p.len {
|
||||
p = []
|
||||
} else {
|
||||
}
|
||||
else {
|
||||
p = p[n..]
|
||||
}
|
||||
}
|
||||
|
@ -173,7 +171,8 @@ fn (d mut Digest) write(p_ []byte) int {
|
|||
block(mut d, p[..n])
|
||||
if n >= p.len {
|
||||
p = []
|
||||
} else {
|
||||
}
|
||||
else {
|
||||
p = p[n..]
|
||||
}
|
||||
}
|
||||
|
@ -208,8 +207,7 @@ fn (d &Digest) sum(b_in []byte) []byte {
|
|||
for b in hash {
|
||||
b_out << b
|
||||
}
|
||||
}
|
||||
}
|
||||
}}
|
||||
return b_out
|
||||
}
|
||||
|
||||
|
@ -218,26 +216,21 @@ fn (d mut Digest) checksum() []byte {
|
|||
mut len := d.len
|
||||
mut tmp := [byte(0)].repeat(128)
|
||||
tmp[0] = 0x80
|
||||
|
||||
if int(len) % 128 < 112 {
|
||||
d.write(tmp[..112 - int(len) % 128])
|
||||
} else {
|
||||
}
|
||||
else {
|
||||
d.write(tmp[..128 + 112 - int(len) % 128])
|
||||
}
|
||||
|
||||
// Length in bits.
|
||||
len <<= u64(3)
|
||||
|
||||
binary.big_endian_put_u64(mut tmp, u64(0)) // upper 64 bits are always zero, because len variable has type u64
|
||||
binary.big_endian_put_u64(mut tmp[8..], len)
|
||||
d.write(tmp[..16])
|
||||
|
||||
if d.nx != 0 {
|
||||
panic('d.nx != 0')
|
||||
}
|
||||
|
||||
mut digest := [byte(0)].repeat(size)
|
||||
|
||||
binary.big_endian_put_u64(mut digest, d.h[0])
|
||||
binary.big_endian_put_u64(mut digest[8..], d.h[1])
|
||||
binary.big_endian_put_u64(mut digest[16..], d.h[2])
|
||||
|
@ -248,7 +241,6 @@ fn (d mut Digest) checksum() []byte {
|
|||
binary.big_endian_put_u64(mut digest[48..], d.h[6])
|
||||
binary.big_endian_put_u64(mut digest[56..], d.h[7])
|
||||
}
|
||||
|
||||
return digest
|
||||
}
|
||||
|
||||
|
@ -297,16 +289,37 @@ fn block(dig mut Digest, p []byte) {
|
|||
|
||||
pub fn (d &Digest) size() int {
|
||||
match d.function {
|
||||
.sha512_224 { return size224 }
|
||||
.sha512_256 { return size256 }
|
||||
.sha384 { return size384 }
|
||||
else { return size }
|
||||
.sha512_224 {
|
||||
return size224
|
||||
}
|
||||
.sha512_256 {
|
||||
return size256
|
||||
}
|
||||
.sha384 {
|
||||
return size384
|
||||
}
|
||||
else {
|
||||
return size
|
||||
}}
|
||||
}
|
||||
|
||||
pub fn (d &Digest) block_size() int { return block_size }
|
||||
pub fn (d &Digest) block_size() int {
|
||||
return block_size
|
||||
}
|
||||
|
||||
pub fn hexhash(s string) string {
|
||||
return sum512(s.bytes()).hex()
|
||||
}
|
||||
|
||||
pub fn hexhash_384(s string) string {
|
||||
return sum384(s.bytes()).hex()
|
||||
}
|
||||
|
||||
pub fn hexhash_512_224(s string) string {
|
||||
return sum512_224(s.bytes()).hex()
|
||||
}
|
||||
|
||||
pub fn hexhash_512_256(s string) string {
|
||||
return sum512_256(s.bytes()).hex()
|
||||
}
|
||||
|
||||
pub fn hexhash(s string) string { return sum512(s.bytes()).hex() }
|
||||
pub fn hexhash_384(s string) string { return sum384(s.bytes()).hex() }
|
||||
pub fn hexhash_512_224(s string) string { return sum512_224(s.bytes()).hex() }
|
||||
pub fn hexhash_512_256(s string) string { return sum512_256(s.bytes()).hex() }
|
||||
|
|
|
@ -1,9 +1,9 @@
|
|||
// Copyright (c) 2019 Alexander Medvednikov. All rights reserved.
|
||||
// Use of this source code is governed by an MIT license
|
||||
// that can be found in the LICENSE file.
|
||||
|
||||
import crypto.sha512
|
||||
|
||||
fn test_crypto_sha512() {
|
||||
assert sha512.sum512('This is a sha512 checksum.'.bytes()).hex() == '4143e55fcba7e39b20f62a1368e5eb28f64a8859458886117ac66027832e0f9f5263daec688c439d2d0fa07059334668d39e59543039703dbb7e03ec9da7f8d7'
|
||||
}
|
||||
|
||||
|
|
|
@ -1,19 +1,16 @@
|
|||
// Copyright (c) 2019 Alexander Medvednikov. All rights reserved.
|
||||
// Use of this source code is governed by an MIT license
|
||||
// that can be found in the LICENSE file.
|
||||
|
||||
// SHA512 block step.
|
||||
// This is the generic version with no architecture optimizations.
|
||||
// In its own file so that an architecture
|
||||
// optimized verision can be substituted
|
||||
|
||||
module sha512
|
||||
|
||||
import math.bits
|
||||
|
||||
const (
|
||||
_k = [
|
||||
0x428a2f98d728ae22,
|
||||
_k = [0x428a2f98d728ae22,
|
||||
0x7137449123ef65cd,
|
||||
0xb5c0fbcfec4d3b2f,
|
||||
0xe9b5dba58189dbbc,
|
||||
|
@ -98,9 +95,7 @@ const(
|
|||
|
||||
fn block_generic(dig mut Digest, p_ []byte) {
|
||||
mut p := p_
|
||||
|
||||
mut w := [u64(0)].repeat(80)
|
||||
|
||||
mut h0 := dig.h[0]
|
||||
mut h1 := dig.h[1]
|
||||
mut h2 := dig.h[2]
|
||||
|
@ -109,22 +104,18 @@ fn block_generic(dig mut Digest, p_ []byte) {
|
|||
mut h5 := dig.h[5]
|
||||
mut h6 := dig.h[6]
|
||||
mut h7 := dig.h[7]
|
||||
|
||||
for p.len >= Chunk {
|
||||
for i := 0; i < 16; i++ {
|
||||
j := i * 8
|
||||
w[i] = u64(u64(u64(p[j])<<56) | u64(u64(p[j+1])<<48) | u64(u64(p[j+2])<<40) | u64(u64(p[j+3])<<32) |
|
||||
u64(u64(p[j+4])<<24) | u64(u64(p[j+5])<<16) | u64(u64(p[j+6])<<8) | u64(p[j+7]))
|
||||
w[i] = u64(u64(u64(p[j])<<56) | u64(u64(p[j + 1])<<48) | u64(u64(p[j + 2])<<40) | u64(u64(p[j + 3])<<32) | u64(u64(p[j + 4])<<24) | u64(u64(p[j + 5])<<16) | u64(u64(p[j + 6])<<8) | u64(p[j + 7]))
|
||||
}
|
||||
for i := 16; i < 80; i++ {
|
||||
v1 := w[i - 2]
|
||||
t1 := bits.rotate_left_64(v1, -19) ^ bits.rotate_left_64(v1, -61) ^ (v1>>6)
|
||||
v2 := w[i - 15]
|
||||
t2 := bits.rotate_left_64(v2, -1) ^ bits.rotate_left_64(v2, -8) ^ (v2>>7)
|
||||
|
||||
w[i] = t1 + w[i - 7] + t2 + w[i - 16]
|
||||
}
|
||||
|
||||
mut a := h0
|
||||
mut b := h1
|
||||
mut c := h2
|
||||
|
@ -133,11 +124,9 @@ fn block_generic(dig mut Digest, p_ []byte) {
|
|||
mut f := h5
|
||||
mut g := h6
|
||||
mut h := h7
|
||||
|
||||
for i := 0; i < 80; i++ {
|
||||
t1 := h + (bits.rotate_left_64(e, -14) ^ bits.rotate_left_64(e, -18) ^ bits.rotate_left_64(e, -41)) + ((e & f) ^ (~e & g)) + _k[i] + w[i]
|
||||
t2 := (bits.rotate_left_64(a, -28) ^ bits.rotate_left_64(a, -34) ^ bits.rotate_left_64(a, -39)) + ((a & b) ^ (a & c) ^ (b & c))
|
||||
|
||||
h = g
|
||||
g = f
|
||||
f = e
|
||||
|
@ -147,7 +136,6 @@ fn block_generic(dig mut Digest, p_ []byte) {
|
|||
b = a
|
||||
a = t1 + t2
|
||||
}
|
||||
|
||||
h0 += a
|
||||
h1 += b
|
||||
h2 += c
|
||||
|
@ -156,14 +144,13 @@ fn block_generic(dig mut Digest, p_ []byte) {
|
|||
h5 += f
|
||||
h6 += g
|
||||
h7 += h
|
||||
|
||||
if Chunk >= p.len {
|
||||
p = []
|
||||
} else {
|
||||
}
|
||||
else {
|
||||
p = p[Chunk..]
|
||||
}
|
||||
}
|
||||
|
||||
dig.h[0] = h0
|
||||
dig.h[1] = h1
|
||||
dig.h[2] = h2
|
||||
|
@ -173,3 +160,4 @@ fn block_generic(dig mut Digest, p_ []byte) {
|
|||
dig.h[6] = h6
|
||||
dig.h[7] = h7
|
||||
}
|
||||
|
||||
|
|
|
@ -1,10 +1,7 @@
|
|||
// Copyright (c) 2019 Alexander Medvednikov. All rights reserved.
|
||||
// Use of this source code is governed by an MIT license
|
||||
// that can be found in the LICENSE file.
|
||||
|
||||
module binary
|
||||
|
||||
|
||||
// Little Endian
|
||||
[inline]
|
||||
pub fn little_endian_endian_u16(b []byte) u16 {
|
||||
|
@ -37,8 +34,7 @@ pub fn little_endian_put_u32(b mut []byte, v u32) {
|
|||
[inline]
|
||||
pub fn little_endian_u64(b []byte) u64 {
|
||||
_ = b[7] // bounds check
|
||||
return u64(b[0]) | u64(u64(b[1])<<u64(8)) | u64(u64(b[2])<<u64(16)) | u64(u64(b[3])<<u64(24)) |
|
||||
u64(u64(b[4])<<u64(32)) | u64(u64(b[5])<<u64(40)) | u64(u64(b[6])<<u64(48)) | u64(u64(b[7])<<u64(56))
|
||||
return u64(b[0]) | u64(u64(b[1])<<u64(8)) | u64(u64(b[2])<<u64(16)) | u64(u64(b[3])<<u64(24)) | u64(u64(b[4])<<u64(32)) | u64(u64(b[5])<<u64(40)) | u64(u64(b[6])<<u64(48)) | u64(u64(b[7])<<u64(56))
|
||||
}
|
||||
|
||||
[inline]
|
||||
|
@ -86,8 +82,7 @@ pub fn big_endian_put_u32(b mut []byte, v u32) {
|
|||
[inline]
|
||||
pub fn big_endian_u64(b []byte) u64 {
|
||||
_ = b[7] // bounds check
|
||||
return u64(b[7]) | u64(u64(b[6])<<u64(8)) | u64(u64(b[5])<<u64(16)) | u64(u64(b[4])<<u64(24)) |
|
||||
u64(u64(b[3])<<u64(32)) | u64(u64(b[2])<<u64(40)) | u64(u64(b[1])<<u64(48)) | u64(u64(b[0])<<u64(56))
|
||||
return u64(b[7]) | u64(u64(b[6])<<u64(8)) | u64(u64(b[5])<<u64(16)) | u64(u64(b[4])<<u64(24)) | u64(u64(b[3])<<u64(32)) | u64(u64(b[2])<<u64(40)) | u64(u64(b[1])<<u64(48)) | u64(u64(b[0])<<u64(56))
|
||||
}
|
||||
|
||||
[inline]
|
||||
|
@ -102,3 +97,4 @@ pub fn big_endian_put_u64(b mut []byte, v u64) {
|
|||
b[6] = byte(v>>u64(8))
|
||||
b[7] = byte(v)
|
||||
}
|
||||
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
// Copyright (c) 2019 Alexander Medvednikov. All rights reserved.
|
||||
// Use of this source code is governed by an MIT license
|
||||
// that can be found in the LICENSE file.
|
||||
|
||||
module math
|
||||
|
||||
const (
|
||||
|
@ -15,7 +14,6 @@ const (
|
|||
sign_mask = (u64(1)<<63)
|
||||
frac_mask = ((u64(1)<<u64(shift)) - u64(1))
|
||||
)
|
||||
|
||||
// inf returns positive infinity if sign >= 0, negative infinity if sign < 0.
|
||||
pub fn inf(sign int) f64 {
|
||||
v := if sign >= 0 { uvinf } else { uvneginf }
|
||||
|
@ -23,7 +21,9 @@ pub fn inf(sign int) f64 {
|
|||
}
|
||||
|
||||
// nan returns an IEEE 754 ``not-a-number'' value.
|
||||
pub fn nan() f64 { return f64_from_bits(uvnan) }
|
||||
pub fn nan() f64 {
|
||||
return f64_from_bits(uvnan)
|
||||
}
|
||||
|
||||
// is_nan reports whether f is an IEEE 754 ``not-a-number'' value.
|
||||
pub fn is_nan(f f64) bool {
|
||||
|
@ -56,3 +56,4 @@ pub fn is_inf(f f64, sign int) bool {
|
|||
// }
|
||||
// return x, 0
|
||||
// }
|
||||
|
||||
|
|
|
@ -1,19 +1,16 @@
|
|||
// Copyright (c) 2019 Alexander Medvednikov. All rights reserved.
|
||||
// Use of this source code is governed by an MIT license
|
||||
// that can be found in the LICENSE file.
|
||||
|
||||
module bits
|
||||
|
||||
const (
|
||||
// See http://supertech.csail.mit.edu/papers/debruijn.pdf
|
||||
de_bruijn32 = u32(0x077CB531)
|
||||
de_bruijn32tab = [
|
||||
byte(0), 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
|
||||
de_bruijn32tab = [byte(0), 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
|
||||
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9,
|
||||
]
|
||||
de_bruijn64 = u64(0x03f79d71b4ca8b09)
|
||||
de_bruijn64tab = [
|
||||
byte(0), 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4,
|
||||
de_bruijn64tab = [byte(0), 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4,
|
||||
62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5,
|
||||
63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11,
|
||||
54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6,
|
||||
|
@ -27,23 +24,28 @@ const(
|
|||
m3 = 0x00ff00ff00ff00ff // etc.
|
||||
m4 = 0x0000ffff0000ffff
|
||||
)
|
||||
|
||||
// --- LeadingZeros ---
|
||||
|
||||
// leading_zeros8 returns the number of leading zero bits in x; the result is 8 for x == 0.
|
||||
pub fn leading_zeros8(x byte) int { return 8 - len8(x) }
|
||||
pub fn leading_zeros8(x byte) int {
|
||||
return 8 - len8(x)
|
||||
}
|
||||
|
||||
// leading_zeros16 returns the number of leading zero bits in x; the result is 16 for x == 0.
|
||||
pub fn leading_zeros16(x u16) int { return 16 - len16(x) }
|
||||
pub fn leading_zeros16(x u16) int {
|
||||
return 16 - len16(x)
|
||||
}
|
||||
|
||||
// leading_zeros32 returns the number of leading zero bits in x; the result is 32 for x == 0.
|
||||
pub fn leading_zeros32(x u32) int { return 32 - len32(x) }
|
||||
pub fn leading_zeros32(x u32) int {
|
||||
return 32 - len32(x)
|
||||
}
|
||||
|
||||
// leading_zeros64 returns the number of leading zero bits in x; the result is 64 for x == 0.
|
||||
pub fn leading_zeros64(x u64) int { return 64 - len64(x) }
|
||||
pub fn leading_zeros64(x u64) int {
|
||||
return 64 - len64(x)
|
||||
}
|
||||
|
||||
// --- TrailingZeros ---
|
||||
|
||||
// trailing_zeros8 returns the number of trailing zero bits in x; the result is 8 for x == 0.
|
||||
pub fn trailing_zeros8(x byte) int {
|
||||
return int(ntz8_tab[x])
|
||||
|
@ -87,7 +89,6 @@ pub fn trailing_zeros64(x u64) int {
|
|||
}
|
||||
|
||||
// --- OnesCount ---
|
||||
|
||||
// ones_count8 returns the number of one bits ("population count") in x.
|
||||
pub fn ones_count8(x byte) int {
|
||||
return int(pop8_tab[x])
|
||||
|
@ -135,7 +136,6 @@ pub fn ones_count64(x u64) int {
|
|||
}
|
||||
|
||||
// --- RotateLeft ---
|
||||
|
||||
// rotate_left_8 returns the value of x rotated left by (k mod 8) bits.
|
||||
// To rotate x right by k bits, call rotate_left_8(x, -k).
|
||||
//
|
||||
|
@ -181,7 +181,6 @@ pub fn rotate_left_64(x u64, k int) u64 {
|
|||
}
|
||||
|
||||
// --- Reverse ---
|
||||
|
||||
// reverse8 returns the value of x with its bits in reversed order.
|
||||
[inline]
|
||||
pub fn reverse8(x byte) byte {
|
||||
|
@ -215,7 +214,6 @@ pub fn reverse64(x u64) u64 {
|
|||
}
|
||||
|
||||
// --- ReverseBytes ---
|
||||
|
||||
// reverse_bytes16 returns the value of x with its bytes in reversed order.
|
||||
//
|
||||
// This function's execution time does not depend on the inputs.
|
||||
|
@ -246,7 +244,6 @@ pub fn reverse_bytes64(x u64) u64 {
|
|||
}
|
||||
|
||||
// --- Len ---
|
||||
|
||||
// len8 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
|
||||
pub fn len8(x byte) int {
|
||||
return int(len8_tab[x])
|
||||
|
@ -296,3 +293,4 @@ pub fn len64(x u64) int {
|
|||
}
|
||||
return n + int(len8_tab[y])
|
||||
}
|
||||
|
||||
|
|
|
@ -1,12 +1,10 @@
|
|||
// Copyright (c) 2019 Alexander Medvednikov. All rights reserved.
|
||||
// Use of this source code is governed by an MIT license
|
||||
// that can be found in the LICENSE file.
|
||||
|
||||
module bits
|
||||
|
||||
const (
|
||||
ntz8_tab = [
|
||||
byte(0x08), 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00,
|
||||
ntz8_tab = [byte(0x08), 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00,
|
||||
0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00,
|
||||
0x05, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00,
|
||||
0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00,
|
||||
|
@ -23,8 +21,7 @@ const(
|
|||
0x05, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00,
|
||||
0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00,
|
||||
]
|
||||
pop8_tab = [
|
||||
byte(0x00), 0x01, 0x01, 0x02, 0x01, 0x02, 0x02, 0x03, 0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04,
|
||||
pop8_tab = [byte(0x00), 0x01, 0x01, 0x02, 0x01, 0x02, 0x02, 0x03, 0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04,
|
||||
0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04, 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05,
|
||||
0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04, 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05,
|
||||
0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06,
|
||||
|
@ -41,8 +38,7 @@ const(
|
|||
0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, 0x04, 0x05, 0x05, 0x06, 0x05, 0x06, 0x06, 0x07,
|
||||
0x04, 0x05, 0x05, 0x06, 0x05, 0x06, 0x06, 0x07, 0x05, 0x06, 0x06, 0x07, 0x06, 0x07, 0x07, 0x08,
|
||||
]
|
||||
rev8_tab = [
|
||||
byte(0x00), 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
|
||||
rev8_tab = [byte(0x00), 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
|
||||
0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
|
||||
0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
|
||||
0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
|
||||
|
@ -59,8 +55,7 @@ const(
|
|||
0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
|
||||
0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff,
|
||||
]
|
||||
len8_tab = [
|
||||
byte(0x00), 0x01, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04,
|
||||
len8_tab = [byte(0x00), 0x01, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04,
|
||||
0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05,
|
||||
0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
|
||||
0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
|
||||
|
@ -78,3 +73,4 @@ const(
|
|||
0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08,
|
||||
]
|
||||
)
|
||||
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
// Copyright (c) 2019 Alexander Medvednikov. All rights reserved.
|
||||
// Use of this source code is governed by an MIT license
|
||||
// that can be found in the LICENSE file.
|
||||
|
||||
module math
|
||||
|
||||
pub const (
|
||||
|
@ -9,30 +8,25 @@ pub const (
|
|||
pi = 3.14159265358979323846264338327950288419716939937510582097494459
|
||||
phi = 1.61803398874989484820458683436563811772030917980576286213544862
|
||||
tau = 6.28318530717958647692528676655900576839433879875021164194988918
|
||||
|
||||
sqrt2 = 1.41421356237309504880168872420969807856967187537694807317667974
|
||||
sqrt_e = 1.64872127070012814684865078781416357165377610071014801157507931
|
||||
sqrt_pi = 1.77245385090551602729816748334114518279754945612238712821380779
|
||||
sqrt_tau = 2.50662827463100050241576528481104525300698674060993831662992357
|
||||
sqrt_phi = 1.27201964951406896425242246173749149171560804184009624861664038
|
||||
|
||||
ln2 = 0.693147180559945309417232121458176568075500134360255254120680009
|
||||
log2_e = 1.0 / ln2
|
||||
ln10 = 2.30258509299404568401799145468436420760110148862877297603332790
|
||||
log10_e = 1.0 / ln10
|
||||
)
|
||||
|
||||
// Floating-point limit values
|
||||
// max is the largest finite value representable by the type.
|
||||
// smallest_non_zero is the smallest positive, non-zero value representable by the type.
|
||||
pub const (
|
||||
max_f32 = 3.40282346638528859811704183484516925440e+38 // 2**127 * (2**24 - 1) / 2**23
|
||||
smallest_non_zero_f32 = 1.401298464324817070923729583289916131280e-45 // 1 / 2**(127 - 1 + 23)
|
||||
|
||||
max_f64 = 1.797693134862315708145274237317043567981e+308 // 2**1023 * (2**53 - 1) / 2**52
|
||||
smallest_non_zero_f64 = 4.940656458412465441765687928682213723651e-324 // 1 / 2**(1023 - 1 + 52)
|
||||
)
|
||||
|
||||
// Integer limit values
|
||||
pub const (
|
||||
max_i8 = 127
|
||||
|
@ -51,3 +45,4 @@ pub const (
|
|||
max_u32 = 4294967295
|
||||
max_u64 = 18446744073709551615
|
||||
)
|
||||
|
||||
|
|
|
@ -1,8 +1,7 @@
|
|||
module math
|
||||
|
||||
const (
|
||||
factorials = [
|
||||
f64(1.000000000000000000000e+0), /* 0! */
|
||||
factorials = [f64(1.000000000000000000000e+0),/* 0! */
|
||||
1.000000000000000000000e+0,/* 1! */
|
||||
2.000000000000000000000e+0,/* 2! */
|
||||
6.000000000000000000000e+0,/* 3! */
|
||||
|
@ -175,3 +174,4 @@ const(
|
|||
7.257415615307998967397e+306/* 170! */
|
||||
]
|
||||
)
|
||||
|
||||
|
|
|
@ -1,46 +1,97 @@
|
|||
// Copyright (c) 2019 Alexander Medvednikov. All rights reserved.
|
||||
// Use of this source code is governed by an MIT license
|
||||
// that can be found in the LICENSE file.
|
||||
|
||||
module math
|
||||
|
||||
#include <math.h>
|
||||
|
||||
fn C.acos(x f64) f64
|
||||
|
||||
|
||||
fn C.asin(x f64) f64
|
||||
|
||||
|
||||
fn C.atan(x f64) f64
|
||||
|
||||
|
||||
fn C.atan2(y f64, x f64) f64
|
||||
|
||||
|
||||
fn C.cbrt(x f64) f64
|
||||
|
||||
|
||||
fn C.ceil(x f64) f64
|
||||
|
||||
|
||||
fn C.cos(x f64) f64
|
||||
|
||||
|
||||
fn C.cosh(x f64) f64
|
||||
|
||||
|
||||
fn C.erf(x f64) f64
|
||||
|
||||
|
||||
fn C.erfc(x f64) f64
|
||||
|
||||
|
||||
fn C.exp(x f64) f64
|
||||
|
||||
|
||||
fn C.exp2(x f64) f64
|
||||
|
||||
|
||||
fn C.fabs(x f64) f64
|
||||
|
||||
|
||||
fn C.floor(x f64) f64
|
||||
|
||||
|
||||
fn C.fmod(x f64, y f64) f64
|
||||
|
||||
|
||||
fn C.hypot(x f64, y f64) f64
|
||||
|
||||
|
||||
fn C.log(x f64) f64
|
||||
|
||||
|
||||
fn C.log2(x f64) f64
|
||||
|
||||
|
||||
fn C.log10(x f64) f64
|
||||
|
||||
|
||||
fn C.lgamma(x f64) f64
|
||||
|
||||
|
||||
fn C.pow(x f64, y f64) f64
|
||||
|
||||
|
||||
fn C.round(x f64) f64
|
||||
|
||||
|
||||
fn C.sin(x f64) f64
|
||||
|
||||
|
||||
fn C.sinh(x f64) f64
|
||||
|
||||
|
||||
fn C.sqrt(x f64) f64
|
||||
|
||||
|
||||
fn C.tgamma(x f64) f64
|
||||
|
||||
|
||||
fn C.tan(x f64) f64
|
||||
|
||||
|
||||
fn C.tanh(x f64) f64
|
||||
|
||||
|
||||
fn C.trunc(x f64) f64
|
||||
|
||||
|
||||
// NOTE
|
||||
// When adding a new function, please make sure it's in the right place.
|
||||
// All functions are sorted alphabetically.
|
||||
|
||||
// Returns the absolute value.
|
||||
pub fn abs(a f64) f64 {
|
||||
return C.fabs(a)
|
||||
|
@ -133,16 +184,13 @@ pub fn exp2(a f64) f64 {
|
|||
// factorial calculates the factorial of the provided value.
|
||||
pub fn factorial(n f64) f64 {
|
||||
// For a large postive argument (n >= factorials.len) return max_f64
|
||||
|
||||
if n >= factorials.len {
|
||||
return max_f64
|
||||
}
|
||||
|
||||
// Otherwise return n!.
|
||||
if n == f64(i64(n)) && n >= 0.0 {
|
||||
return factorials[i64(n)]
|
||||
}
|
||||
|
||||
return gamma(n + 1.0)
|
||||
}
|
||||
|
||||
|
@ -268,6 +316,7 @@ pub fn sinh(a f64) f64 {
|
|||
pub fn sqrt(a f64) f64 {
|
||||
return C.sqrt(a)
|
||||
}
|
||||
|
||||
// tan calculates tangent.
|
||||
pub fn tan(a f64) f64 {
|
||||
return C.tan(a)
|
||||
|
@ -283,3 +332,4 @@ pub fn tanh(a f64) f64 {
|
|||
pub fn trunc(a f64) f64 {
|
||||
return C.trunc(a)
|
||||
}
|
||||
|
||||
|
|
|
@ -1,9 +1,7 @@
|
|||
// Copyright (c) 2019 Alexander Medvednikov. All rights reserved.
|
||||
// Use of this source code is governed by an MIT license
|
||||
// that can be found in the LICENSE file.
|
||||
|
||||
module math
|
||||
|
||||
// f32_bits returns the IEEE 754 binary representation of f,
|
||||
// with the sign bit of f and the result in the same bit position.
|
||||
// f32_bits(f32_from_bits(x)) == x.
|
||||
|
@ -37,3 +35,4 @@ pub fn f64_from_bits(b u64) f64 {
|
|||
p := *f64(&b)
|
||||
return *p
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue