rand: reorganize (step 1)
parent
4fcabb71c4
commit
a7c84834f4
|
@ -1,15 +0,0 @@
|
|||
// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
|
||||
// Use of this source code is governed by an MIT license
|
||||
// that can be found in the LICENSE file.
|
||||
module wyhash
|
||||
|
||||
pub fn rand_u64(seed &u64) u64 {
|
||||
mut seed0 := seed
|
||||
unsafe{
|
||||
mut seed1 := *seed0
|
||||
seed1 += wyp0
|
||||
*seed0 = seed1
|
||||
return wymum(seed1^wyp1, seed1)
|
||||
}
|
||||
return 0
|
||||
}
|
|
@ -92,7 +92,7 @@ fn wyrotr(v u64, k u32) u64 {
|
|||
}
|
||||
|
||||
[inline]
|
||||
fn wymum(a, b u64) u64 {
|
||||
pub fn wymum(a, b u64) u64 {
|
||||
/*
|
||||
mut r := u128(a)
|
||||
r = r*b
|
||||
|
|
|
@ -27,16 +27,3 @@ fn test_wyhash() {
|
|||
assert got == test.expected
|
||||
}
|
||||
}
|
||||
|
||||
fn test_rand_u64() {
|
||||
seed := u64(111)
|
||||
mut rand_nos := []u64{}
|
||||
for _ in 0..40 {
|
||||
rand_no := wyhash.rand_u64(&seed)
|
||||
for r in rand_nos {
|
||||
assert rand_no != r
|
||||
}
|
||||
rand_nos << rand_no
|
||||
}
|
||||
assert true
|
||||
}
|
||||
|
|
|
@ -0,0 +1,320 @@
|
|||
// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
|
||||
// Use of this source code is governed by an MIT license
|
||||
// that can be found in the LICENSE file.
|
||||
module rand
|
||||
|
||||
import math.bits
|
||||
|
||||
/*
|
||||
C++ functions for MT19937, with initialization improved 2002/2/10.
|
||||
Coded by Takuji Nishimura and Makoto Matsumoto.
|
||||
This is a faster version by taking Shawn Cokus's optimization,
|
||||
Matthe Bellew's simplification, Isaku Wada's real version.
|
||||
|
||||
Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions
|
||||
are met:
|
||||
|
||||
1. Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
2. Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
3. The names of its contributors may not be used to endorse or promote
|
||||
products derived from this software without specific prior written
|
||||
permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
|
||||
Any feedback is very welcome.
|
||||
http://www.math.keio.ac.jp/matumoto/emt.html
|
||||
email: matumoto@math.keio.ac.jp
|
||||
*/
|
||||
const (
|
||||
nn = 312
|
||||
mm = 156
|
||||
matrix_a = 0xB5026F5AA96619E9
|
||||
um = 0xFFFFFFFF80000000
|
||||
lm = 0x7FFFFFFF
|
||||
inv_f64_limit = 1.0 / 9007199254740992.0
|
||||
)
|
||||
|
||||
// A generator that uses the Mersenne Twister algorithm with period 2^19937
|
||||
pub struct MT19937RNG {
|
||||
mut:
|
||||
state []u64 = calculate_state(time_seed_array(2), mut []u64{len: nn})
|
||||
mti int = nn
|
||||
next_rnd u32 = 0
|
||||
has_next bool = false
|
||||
}
|
||||
|
||||
fn calculate_state(seed_data []u32, mut state []u64) []u64 {
|
||||
lo := u64(seed_data[0])
|
||||
hi := u64(seed_data[1])
|
||||
state[0] = u64((hi << 32) | lo)
|
||||
for j := 1; j < nn; j++ {
|
||||
state[j] = u64(6364136223846793005) * (state[j - 1] ^ (state[j - 1] >> 62)) + u64(j)
|
||||
}
|
||||
return state
|
||||
}
|
||||
|
||||
// seed() - Set the seed, needs only two u32s in little endian format as [lower, higher]
|
||||
pub fn (mut rng MT19937RNG) seed(seed_data []u32) {
|
||||
if seed_data.len != 2 {
|
||||
eprintln('mt19937 needs only two 32bit integers as seed: [lower, higher]')
|
||||
exit(1)
|
||||
}
|
||||
rng.state = calculate_state(seed_data, mut rng.state)
|
||||
rng.mti = nn
|
||||
rng.next_rnd = 0
|
||||
rng.has_next = false
|
||||
}
|
||||
|
||||
// rng.u32() - return a pseudorandom 32bit int in [0, 2**32)
|
||||
[inline]
|
||||
pub fn (mut rng MT19937RNG) u32() u32 {
|
||||
if rng.has_next {
|
||||
rng.has_next = false
|
||||
return rng.next_rnd
|
||||
}
|
||||
ans := rng.u64()
|
||||
rng.next_rnd = u32(ans >> 32)
|
||||
rng.has_next = true
|
||||
return u32(ans & 0xffffffff)
|
||||
}
|
||||
|
||||
// rng.u64() - return a pseudorandom 64bit int in [0, 2**64)
|
||||
[inline]
|
||||
pub fn (mut rng MT19937RNG) u64() u64 {
|
||||
mag01 := [u64(0), u64(matrix_a)]
|
||||
mut x := u64(0)
|
||||
mut i := int(0)
|
||||
if rng.mti >= nn {
|
||||
for i = 0; i < nn - mm; i++ {
|
||||
x = (rng.state[i] & um) | (rng.state[i + 1] & lm)
|
||||
rng.state[i] = rng.state[i + mm] ^ (x >> 1) ^ mag01[int(x & 1)]
|
||||
}
|
||||
for i < nn - 1 {
|
||||
x = (rng.state[i] & um) | (rng.state[i + 1] & lm)
|
||||
rng.state[i] = rng.state[i + (mm - nn)] ^ (x >> 1) ^ mag01[int(x & 1)]
|
||||
i++
|
||||
}
|
||||
x = (rng.state[nn - 1] & um) | (rng.state[0] & lm)
|
||||
rng.state[nn - 1] = rng.state[mm - 1] ^ (x >> 1) ^ mag01[int(x & 1)]
|
||||
rng.mti = 0
|
||||
}
|
||||
x = rng.state[rng.mti]
|
||||
rng.mti++
|
||||
x ^= (x >> 29) & 0x5555555555555555
|
||||
x ^= (x << 17) & 0x71D67FFFEDA60000
|
||||
x ^= (x << 37) & 0xFFF7EEE000000000
|
||||
x ^= (x >> 43)
|
||||
return x
|
||||
}
|
||||
|
||||
// rng.int() - return a 32-bit signed (possibly negative) int
|
||||
[inline]
|
||||
pub fn (mut rng MT19937RNG) int() int {
|
||||
return int(rng.u32())
|
||||
}
|
||||
|
||||
// rng.i64() - return a 64-bit signed (possibly negative) i64
|
||||
[inline]
|
||||
pub fn (mut rng MT19937RNG) i64() i64 {
|
||||
return i64(rng.u64())
|
||||
}
|
||||
|
||||
// rng.int31() - return a 31bit positive pseudorandom integer
|
||||
[inline]
|
||||
pub fn (mut rng MT19937RNG) int31() int {
|
||||
return int(rng.u32() >> 1)
|
||||
}
|
||||
|
||||
// rng.int63() - return a 63bit positive pseudorandom integer
|
||||
[inline]
|
||||
pub fn (mut rng MT19937RNG) int63() i64 {
|
||||
return i64(rng.u64() >> 1)
|
||||
}
|
||||
|
||||
// rng.u32n(max) - return a 32bit u32 in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng MT19937RNG) u32n(max u32) u32 {
|
||||
if max == 0 {
|
||||
eprintln('max must be positive integer')
|
||||
exit(1)
|
||||
}
|
||||
// Check SysRNG in system_rng.c.v for explanation
|
||||
bit_len := bits.len_32(max)
|
||||
if bit_len == 32 {
|
||||
for {
|
||||
value := rng.u32()
|
||||
if value < max {
|
||||
return value
|
||||
}
|
||||
}
|
||||
} else {
|
||||
mask := (u32(1) << (bit_len + 1)) - 1
|
||||
for {
|
||||
value := rng.u32() & mask
|
||||
if value < max {
|
||||
return value
|
||||
}
|
||||
}
|
||||
}
|
||||
return u32(0)
|
||||
}
|
||||
|
||||
// rng.u64n(max) - return a 64bit u64 in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng MT19937RNG) u64n(max u64) u64 {
|
||||
if max == 0 {
|
||||
eprintln('max must be positive integer')
|
||||
exit(1)
|
||||
}
|
||||
bit_len := bits.len_64(max)
|
||||
if bit_len == 64 {
|
||||
for {
|
||||
value := rng.u64()
|
||||
if value < max {
|
||||
return value
|
||||
}
|
||||
}
|
||||
} else {
|
||||
mask := (u64(1) << (bit_len + 1)) - 1
|
||||
for {
|
||||
value := rng.u64() & mask
|
||||
if value < max {
|
||||
return value
|
||||
}
|
||||
}
|
||||
}
|
||||
return u64(0)
|
||||
}
|
||||
|
||||
// rng.u32n(min, max) returns a pseudorandom u32 value that is guaranteed to be in [min, max)
|
||||
[inline]
|
||||
pub fn (mut rng MT19937RNG) u32_in_range(min, max u32) u32 {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min')
|
||||
exit(1)
|
||||
}
|
||||
return min + rng.u32n(max - min)
|
||||
}
|
||||
|
||||
// rng.u64n(min, max) returns a pseudorandom u64 value that is guaranteed to be in [min, max)
|
||||
[inline]
|
||||
pub fn (mut rng MT19937RNG) u64_in_range(min, max u64) u64 {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min')
|
||||
exit(1)
|
||||
}
|
||||
return min + rng.u64n(max - min)
|
||||
}
|
||||
|
||||
// rng.intn(max) - return a 32bit positive int in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng MT19937RNG) intn(max int) int {
|
||||
if max <= 0 {
|
||||
eprintln('max has to be positive.')
|
||||
exit(1)
|
||||
}
|
||||
return int(rng.u32n(max))
|
||||
}
|
||||
|
||||
// rng.i64n(max) - return a 64bit positive i64 in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng MT19937RNG) i64n(max i64) i64 {
|
||||
if max <= 0 {
|
||||
eprintln('max has to be positive.')
|
||||
exit(1)
|
||||
}
|
||||
return i64(rng.u64n(max))
|
||||
}
|
||||
|
||||
// rng.int_in_range(min, max) - return a 32bit positive int in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng MT19937RNG) int_in_range(min, max int) int {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min.')
|
||||
exit(1)
|
||||
}
|
||||
return min + rng.intn(max - min)
|
||||
}
|
||||
|
||||
// rng.i64_in_range(min, max) - return a 64bit positive i64 in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng MT19937RNG) i64_in_range(min, max i64) i64 {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min.')
|
||||
exit(1)
|
||||
}
|
||||
return min + rng.i64n(max - min)
|
||||
}
|
||||
|
||||
// rng.f32() - return a 32bit real in [0, 1)
|
||||
[inline]
|
||||
pub fn (mut rng MT19937RNG) f32() f32 {
|
||||
return f32(rng.f64())
|
||||
}
|
||||
|
||||
// rng.f64() - return 64bit real in [0, 1)
|
||||
[inline]
|
||||
pub fn (mut rng MT19937RNG) f64() f64 {
|
||||
return f64(rng.u64() >> 11) * inv_f64_limit
|
||||
}
|
||||
|
||||
// rng.f32n(max) - return 64bit real in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng MT19937RNG) f32n(max f32) f32 {
|
||||
if max <= 0 {
|
||||
eprintln('max has to be positive.')
|
||||
exit(1)
|
||||
}
|
||||
return rng.f32() * max
|
||||
}
|
||||
|
||||
// rng.f64n(max) - return 64bit real in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng MT19937RNG) f64n(max f64) f64 {
|
||||
if max <= 0 {
|
||||
eprintln('max has to be positive.')
|
||||
exit(1)
|
||||
}
|
||||
return rng.f64() * max
|
||||
}
|
||||
|
||||
// rng.f32_in_range(min, max) returns a pseudorandom f32 that lies in [min, max)
|
||||
[inline]
|
||||
pub fn (mut rng MT19937RNG) f32_in_range(min, max f32) f32 {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min')
|
||||
exit(1)
|
||||
}
|
||||
return min + rng.f32n(max - min)
|
||||
}
|
||||
|
||||
// rng.i64_in_range(min, max) returns a pseudorandom i64 that lies in [min, max)
|
||||
[inline]
|
||||
pub fn (mut rng MT19937RNG) f64_in_range(min, max f64) f64 {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min')
|
||||
exit(1)
|
||||
}
|
||||
return min + rng.f64n(max - min)
|
||||
}
|
|
@ -0,0 +1,340 @@
|
|||
import rand
|
||||
import math
|
||||
|
||||
const (
|
||||
range_limit = 40
|
||||
value_count = 1000
|
||||
seeds = [[u32(0xcafebabe), u32(0xdeadbeef)], [u32(0xc0de), u32(0xfeed)]]
|
||||
)
|
||||
|
||||
const (
|
||||
sample_size = 1000
|
||||
stats_epsilon = 0.05
|
||||
inv_sqrt_12 = 1.0 / math.sqrt(12)
|
||||
)
|
||||
|
||||
fn mt19937_basic_test() {
|
||||
rng := rand.MT19937RNG{}
|
||||
rng.seed([u32(0xdeadbeef)])
|
||||
target := [956529277, 3842322136, 3319553134, 1843186657, 2704993644, 595827513, 938518626,
|
||||
1676224337, 3221315650, 1819026461]
|
||||
for i := 0; i < 10; i++ {
|
||||
assert target[i] == rng.u32()
|
||||
}
|
||||
}
|
||||
|
||||
fn gen_randoms(seed_data []u32, bound int) []u64 {
|
||||
bound_u64 := u64(bound)
|
||||
mut randoms := [u64(0)].repeat(20)
|
||||
mut rnd := rand.MT19937RNG{}
|
||||
rnd.seed(seed_data)
|
||||
for i in 0 .. 20 {
|
||||
randoms[i] = rnd.u64n(bound_u64)
|
||||
}
|
||||
return randoms
|
||||
}
|
||||
|
||||
fn test_mt19937_reproducibility() {
|
||||
seed_data := rand.time_seed_array(2)
|
||||
randoms1 := gen_randoms(seed_data, 1000)
|
||||
randoms2 := gen_randoms(seed_data, 1000)
|
||||
assert randoms1.len == randoms2.len
|
||||
len := randoms1.len
|
||||
for i in 0 .. len {
|
||||
assert randoms1[i] == randoms2[i]
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: use the `in` syntax and remove this function
|
||||
// after generics has been completely implemented
|
||||
fn found(value u64, arr []u64) bool {
|
||||
for item in arr {
|
||||
if value == item {
|
||||
return true
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
fn test_mt19937_variability() {
|
||||
// If this test fails and if it is certainly not the implementation
|
||||
// at fault, try changing the seed values. Repeated values are
|
||||
// improbable but not impossible.
|
||||
for seed in seeds {
|
||||
mut rng := rand.MT19937RNG{}
|
||||
rng.seed(seed)
|
||||
mut values := []u64{cap: value_count}
|
||||
for i in 0 .. value_count {
|
||||
value := rng.u64()
|
||||
assert !found(value, values)
|
||||
assert values.len == i
|
||||
values << value
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn check_uniformity_u64(rng rand.MT19937RNG, range u64) {
|
||||
range_f64 := f64(range)
|
||||
expected_mean := range_f64 / 2.0
|
||||
mut variance := 0.0
|
||||
for _ in 0 .. sample_size {
|
||||
diff := f64(rng.u64n(range)) - expected_mean
|
||||
variance += diff * diff
|
||||
}
|
||||
variance /= sample_size - 1
|
||||
sigma := math.sqrt(variance)
|
||||
expected_sigma := range_f64 * inv_sqrt_12
|
||||
error := (sigma - expected_sigma) / expected_sigma
|
||||
assert math.abs(error) < stats_epsilon
|
||||
}
|
||||
|
||||
fn test_mt19937_uniformity_u64() {
|
||||
ranges := [14019545, 80240, 130]
|
||||
for seed in seeds {
|
||||
mut rng := rand.MT19937RNG{}
|
||||
rng.seed(seed)
|
||||
for range in ranges {
|
||||
check_uniformity_u64(rng, range)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn check_uniformity_f64(rng rand.MT19937RNG) {
|
||||
expected_mean := 0.5
|
||||
mut variance := 0.0
|
||||
for _ in 0 .. sample_size {
|
||||
diff := rng.f64() - expected_mean
|
||||
variance += diff * diff
|
||||
}
|
||||
variance /= sample_size - 1
|
||||
sigma := math.sqrt(variance)
|
||||
expected_sigma := inv_sqrt_12
|
||||
error := (sigma - expected_sigma) / expected_sigma
|
||||
assert math.abs(error) < stats_epsilon
|
||||
}
|
||||
|
||||
fn test_mt19937_uniformity_f64() {
|
||||
// The f64 version
|
||||
for seed in seeds {
|
||||
mut rng := rand.MT19937RNG{}
|
||||
rng.seed(seed)
|
||||
check_uniformity_f64(rng)
|
||||
}
|
||||
}
|
||||
|
||||
fn test_mt19937_u32n() {
|
||||
max := 16384
|
||||
for seed in seeds {
|
||||
mut rng := rand.MT19937RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.u32n(max)
|
||||
assert value >= 0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_mt19937_u64n() {
|
||||
max := u64(379091181005)
|
||||
for seed in seeds {
|
||||
mut rng := rand.MT19937RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.u64n(max)
|
||||
assert value >= 0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_mt19937_u32_in_range() {
|
||||
max := 484468466
|
||||
min := 316846
|
||||
for seed in seeds {
|
||||
mut rng := rand.MT19937RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.u32_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_mt19937_u64_in_range() {
|
||||
max := u64(216468454685163)
|
||||
min := u64(6848646868)
|
||||
for seed in seeds {
|
||||
mut rng := rand.MT19937RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.u64_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_mt19937_int31() {
|
||||
max_u31 := 0x7FFFFFFF
|
||||
sign_mask := 0x80000000
|
||||
for seed in seeds {
|
||||
mut rng := rand.MT19937RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.int31()
|
||||
assert value >= 0
|
||||
assert value <= max_u31
|
||||
// This statement ensures that the sign bit is zero
|
||||
assert (value & sign_mask) == 0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_mt19937_int63() {
|
||||
max_u63 := i64(0x7FFFFFFFFFFFFFFF)
|
||||
sign_mask := i64(0x8000000000000000)
|
||||
for seed in seeds {
|
||||
mut rng := rand.MT19937RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.int63()
|
||||
assert value >= 0
|
||||
assert value <= max_u63
|
||||
assert (value & sign_mask) == 0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_mt19937_intn() {
|
||||
max := 2525642
|
||||
for seed in seeds {
|
||||
rng := rand.MT19937RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.intn(max)
|
||||
assert value >= 0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_mt19937_i64n() {
|
||||
max := i64(3246727724653636)
|
||||
for seed in seeds {
|
||||
rng := rand.MT19937RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.i64n(max)
|
||||
assert value >= 0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_mt19937_int_in_range() {
|
||||
min := -4252
|
||||
max := 1034
|
||||
for seed in seeds {
|
||||
rng := rand.MT19937RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.int_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_mt19937_i64_in_range() {
|
||||
min := i64(-24095)
|
||||
max := i64(324058)
|
||||
for seed in seeds {
|
||||
rng := rand.MT19937RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.i64_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_mt19937_f32() {
|
||||
for seed in seeds {
|
||||
mut rng := rand.MT19937RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f32()
|
||||
assert value >= 0.0
|
||||
assert value < 1.0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_mt19937_f64() {
|
||||
for seed in seeds {
|
||||
mut rng := rand.MT19937RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f64()
|
||||
assert value >= 0.0
|
||||
assert value < 1.0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_mt19937_f32n() {
|
||||
max := f32(357.0)
|
||||
for seed in seeds {
|
||||
mut rng := rand.MT19937RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f32n(max)
|
||||
assert value >= 0.0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_mt19937_f64n() {
|
||||
max := 1.52e6
|
||||
for seed in seeds {
|
||||
mut rng := rand.MT19937RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f64n(max)
|
||||
assert value >= 0.0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_mt19937_f32_in_range() {
|
||||
min := f32(-24.0)
|
||||
max := f32(125.0)
|
||||
for seed in seeds {
|
||||
mut rng := rand.MT19937RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f32_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_mt19937_f64_in_range() {
|
||||
min := -548.7
|
||||
max := 5015.2
|
||||
for seed in seeds {
|
||||
mut rng := rand.MT19937RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f64_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,236 @@
|
|||
// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
|
||||
// Use of this source code is governed by an MIT license
|
||||
// that can be found in the LICENSE file.
|
||||
module rand
|
||||
|
||||
import math.bits
|
||||
|
||||
// Ported from https://git.musl-libc.org/cgit/musl/tree/src/prng/rand_r.c
|
||||
pub struct MuslRNG {
|
||||
mut:
|
||||
state u32 = time_seed_32()
|
||||
}
|
||||
|
||||
pub fn (mut rng MuslRNG) seed(seed_data []u32) {
|
||||
if seed_data.len != 1 {
|
||||
eprintln('MuslRNG needs only one unsigned 32 bit integer as a seed.')
|
||||
exit(1)
|
||||
}
|
||||
rng.state = seed_data[0]
|
||||
}
|
||||
|
||||
[inline]
|
||||
fn temper(prev u32) u32 {
|
||||
mut x := prev
|
||||
x ^= x >> 11
|
||||
x ^= (x << 7) & 0x9D2C5680
|
||||
x ^= (x << 15) & 0xEFC60000
|
||||
x ^= (x >> 18)
|
||||
return x
|
||||
}
|
||||
|
||||
// rng.u32() - return a pseudorandom 32 bit unsigned u32
|
||||
[inline]
|
||||
pub fn (mut rng MuslRNG) u32() u32 {
|
||||
rng.state = rng.state * 1103515245 + 12345
|
||||
// We are not dividing by 2 (or shifting right by 1)
|
||||
// because we want all 32-bits of random data
|
||||
return temper(rng.state)
|
||||
}
|
||||
|
||||
// rng.u64() - return a pseudorandom 64 bit unsigned u64
|
||||
[inline]
|
||||
pub fn (mut rng MuslRNG) u64() u64 {
|
||||
return u64(rng.u32()) | (u64(rng.u32()) << 32)
|
||||
}
|
||||
|
||||
// rn.u32n(max) - return a pseudorandom 32 bit unsigned u32 in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng MuslRNG) u32n(max u32) u32 {
|
||||
if max == 0 {
|
||||
eprintln('max must be positive integer')
|
||||
exit(1)
|
||||
}
|
||||
// Check SysRNG in system_rng.c.v for explanation
|
||||
bit_len := bits.len_32(max)
|
||||
if bit_len == 32 {
|
||||
for {
|
||||
value := rng.u32()
|
||||
if value < max {
|
||||
return value
|
||||
}
|
||||
}
|
||||
} else {
|
||||
mask := (u32(1) << (bit_len + 1)) - 1
|
||||
for {
|
||||
value := rng.u32() & mask
|
||||
if value < max {
|
||||
return value
|
||||
}
|
||||
}
|
||||
}
|
||||
return u32(0)
|
||||
}
|
||||
|
||||
// rn.u64n(max) - return a pseudorandom 64 bit unsigned u64 in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng MuslRNG) u64n(max u64) u64 {
|
||||
if max == 0 {
|
||||
eprintln('max must be positive integer')
|
||||
exit(1)
|
||||
}
|
||||
bit_len := bits.len_64(max)
|
||||
if bit_len == 64 {
|
||||
for {
|
||||
value := rng.u64()
|
||||
if value < max {
|
||||
return value
|
||||
}
|
||||
}
|
||||
} else {
|
||||
mask := (u64(1) << (bit_len + 1)) - 1
|
||||
for {
|
||||
value := rng.u64() & mask
|
||||
if value < max {
|
||||
return value
|
||||
}
|
||||
}
|
||||
}
|
||||
return u64(0)
|
||||
}
|
||||
|
||||
// rn.u32_in_range(min, max) - return a pseudorandom 32 bit unsigned u32 in [min, max)
|
||||
[inline]
|
||||
pub fn (mut rng MuslRNG) u32_in_range(min, max u64) u64 {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min')
|
||||
exit(1)
|
||||
}
|
||||
return min + rng.u32n(max - min)
|
||||
}
|
||||
|
||||
// rn.u64_in_range(min, max) - return a pseudorandom 64 bit unsigned u64 in [min, max)
|
||||
[inline]
|
||||
pub fn (mut rng MuslRNG) u64_in_range(min, max u64) u64 {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min')
|
||||
exit(1)
|
||||
}
|
||||
return min + rng.u64n(max - min)
|
||||
}
|
||||
|
||||
// rng.int() - return a 32-bit signed (possibly negative) int
|
||||
[inline]
|
||||
pub fn (mut rng MuslRNG) int() int {
|
||||
return int(rng.u32())
|
||||
}
|
||||
|
||||
// rng.i64() - return a 64-bit signed (possibly negative) i64
|
||||
[inline]
|
||||
pub fn (mut rng MuslRNG) i64() i64 {
|
||||
return i64(rng.u64())
|
||||
}
|
||||
|
||||
// rng.int31() - return a 31bit positive pseudorandom integer
|
||||
[inline]
|
||||
pub fn (mut rng MuslRNG) int31() int {
|
||||
return int(rng.u32() >> 1)
|
||||
}
|
||||
|
||||
// rng.int63() - return a 63bit positive pseudorandom integer
|
||||
[inline]
|
||||
pub fn (mut rng MuslRNG) int63() i64 {
|
||||
return i64(rng.u64() >> 1)
|
||||
}
|
||||
|
||||
// rng.intn(max) - return a 32bit positive int in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng MuslRNG) intn(max int) int {
|
||||
if max <= 0 {
|
||||
eprintln('max has to be positive.')
|
||||
exit(1)
|
||||
}
|
||||
return int(rng.u32n(max))
|
||||
}
|
||||
|
||||
// rng.i64n(max) - return a 64bit positive i64 in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng MuslRNG) i64n(max i64) i64 {
|
||||
if max <= 0 {
|
||||
eprintln('max has to be positive.')
|
||||
exit(1)
|
||||
}
|
||||
return i64(rng.u64n(max))
|
||||
}
|
||||
|
||||
// rng.int_in_range(min, max) - return a 32bit positive int in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng MuslRNG) int_in_range(min, max int) int {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min.')
|
||||
exit(1)
|
||||
}
|
||||
return min + rng.intn(max - min)
|
||||
}
|
||||
|
||||
// rng.i64_in_range(min, max) - return a 64bit positive i64 in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng MuslRNG) i64_in_range(min, max i64) i64 {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min.')
|
||||
exit(1)
|
||||
}
|
||||
return min + rng.i64n(max - min)
|
||||
}
|
||||
|
||||
// rng.f32() returns a pseudorandom f32 value between 0.0 (inclusive) and 1.0 (exclusive) i.e [0, 1)
|
||||
[inline]
|
||||
pub fn (mut rng MuslRNG) f32() f32 {
|
||||
return f32(rng.u32()) / max_u32_as_f32
|
||||
}
|
||||
|
||||
// rng.f64() returns a pseudorandom f64 value between 0.0 (inclusive) and 1.0 (exclusive) i.e [0, 1)
|
||||
[inline]
|
||||
pub fn (mut rng MuslRNG) f64() f64 {
|
||||
return f64(rng.u64()) / max_u64_as_f64
|
||||
}
|
||||
|
||||
// rng.f32n() returns a pseudorandom f32 value in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng MuslRNG) f32n(max f32) f32 {
|
||||
if max <= 0 {
|
||||
eprintln('max has to be positive.')
|
||||
exit(1)
|
||||
}
|
||||
return rng.f32() * max
|
||||
}
|
||||
|
||||
// rng.f64n() returns a pseudorandom f64 value in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng MuslRNG) f64n(max f64) f64 {
|
||||
if max <= 0 {
|
||||
eprintln('max has to be positive.')
|
||||
exit(1)
|
||||
}
|
||||
return rng.f64() * max
|
||||
}
|
||||
|
||||
// rng.f32_in_range(min, max) returns a pseudorandom f32 that lies in [min, max)
|
||||
[inline]
|
||||
pub fn (mut rng MuslRNG) f32_in_range(min, max f32) f32 {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min')
|
||||
exit(1)
|
||||
}
|
||||
return min + rng.f32n(max - min)
|
||||
}
|
||||
|
||||
// rng.i64_in_range(min, max) returns a pseudorandom i64 that lies in [min, max)
|
||||
[inline]
|
||||
pub fn (mut rng MuslRNG) f64_in_range(min, max f64) f64 {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min')
|
||||
exit(1)
|
||||
}
|
||||
return min + rng.f64n(max - min)
|
||||
}
|
|
@ -0,0 +1,330 @@
|
|||
import rand
|
||||
import math
|
||||
|
||||
const (
|
||||
range_limit = 40
|
||||
value_count = 1000
|
||||
seeds = [[u32(42)], [u32(256)]]
|
||||
)
|
||||
|
||||
const (
|
||||
sample_size = 1000
|
||||
stats_epsilon = 0.05
|
||||
inv_sqrt_12 = 1.0 / math.sqrt(12)
|
||||
)
|
||||
|
||||
fn gen_randoms(seed_data []u32, bound int) []u64 {
|
||||
bound_u64 := u64(bound)
|
||||
mut randoms := [u64(0)].repeat(20)
|
||||
mut rnd := rand.MuslRNG{}
|
||||
rnd.seed(seed_data)
|
||||
for i in 0 .. 20 {
|
||||
randoms[i] = rnd.u64n(bound_u64)
|
||||
}
|
||||
return randoms
|
||||
}
|
||||
|
||||
fn test_musl_reproducibility() {
|
||||
seed_data := rand.time_seed_array(1)
|
||||
randoms1 := gen_randoms(seed_data, 1000)
|
||||
randoms2 := gen_randoms(seed_data, 1000)
|
||||
assert randoms1.len == randoms2.len
|
||||
len := randoms1.len
|
||||
for i in 0 .. len {
|
||||
assert randoms1[i] == randoms2[i]
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: use the `in` syntax and remove this function
|
||||
// after generics has been completely implemented
|
||||
fn found(value u64, arr []u64) bool {
|
||||
for item in arr {
|
||||
if value == item {
|
||||
return true
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
fn test_musl_variability() {
|
||||
// If this test fails and if it is certainly not the implementation
|
||||
// at fault, try changing the seed values. Repeated values are
|
||||
// improbable but not impossible.
|
||||
for seed in seeds {
|
||||
mut rng := rand.MuslRNG{}
|
||||
rng.seed(seed)
|
||||
mut values := []u64{cap: value_count}
|
||||
for i in 0 .. value_count {
|
||||
value := rng.u64()
|
||||
assert !found(value, values)
|
||||
assert values.len == i
|
||||
values << value
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn check_uniformity_u64(rng rand.MuslRNG, range u64) {
|
||||
range_f64 := f64(range)
|
||||
expected_mean := range_f64 / 2.0
|
||||
mut variance := 0.0
|
||||
for _ in 0 .. sample_size {
|
||||
diff := f64(rng.u64n(range)) - expected_mean
|
||||
variance += diff * diff
|
||||
}
|
||||
variance /= sample_size - 1
|
||||
sigma := math.sqrt(variance)
|
||||
expected_sigma := range_f64 * inv_sqrt_12
|
||||
error := (sigma - expected_sigma) / expected_sigma
|
||||
assert math.abs(error) < stats_epsilon
|
||||
}
|
||||
|
||||
fn test_musl_uniformity_u64() {
|
||||
ranges := [14019545, 80240, 130]
|
||||
for seed in seeds {
|
||||
mut rng := rand.MuslRNG{}
|
||||
rng.seed(seed)
|
||||
for range in ranges {
|
||||
check_uniformity_u64(rng, range)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn check_uniformity_f64(rng rand.MuslRNG) {
|
||||
expected_mean := 0.5
|
||||
mut variance := 0.0
|
||||
for _ in 0 .. sample_size {
|
||||
diff := rng.f64() - expected_mean
|
||||
variance += diff * diff
|
||||
}
|
||||
variance /= sample_size - 1
|
||||
sigma := math.sqrt(variance)
|
||||
expected_sigma := inv_sqrt_12
|
||||
error := (sigma - expected_sigma) / expected_sigma
|
||||
assert math.abs(error) < stats_epsilon
|
||||
}
|
||||
|
||||
fn test_musl_uniformity_f64() {
|
||||
// The f64 version
|
||||
for seed in seeds {
|
||||
mut rng := rand.MuslRNG{}
|
||||
rng.seed(seed)
|
||||
check_uniformity_f64(rng)
|
||||
}
|
||||
}
|
||||
|
||||
fn test_musl_u32n() {
|
||||
max := 16384
|
||||
for seed in seeds {
|
||||
mut rng := rand.MuslRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.u32n(max)
|
||||
assert value >= 0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_musl_u64n() {
|
||||
max := u64(379091181005)
|
||||
for seed in seeds {
|
||||
mut rng := rand.MuslRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.u64n(max)
|
||||
assert value >= 0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_musl_u32_in_range() {
|
||||
max := 484468466
|
||||
min := 316846
|
||||
for seed in seeds {
|
||||
mut rng := rand.MuslRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.u32_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_musl_u64_in_range() {
|
||||
max := u64(216468454685163)
|
||||
min := u64(6848646868)
|
||||
for seed in seeds {
|
||||
mut rng := rand.MuslRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.u64_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_musl_int31() {
|
||||
max_u31 := 0x7FFFFFFF
|
||||
sign_mask := 0x80000000
|
||||
for seed in seeds {
|
||||
mut rng := rand.MuslRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.int31()
|
||||
assert value >= 0
|
||||
assert value <= max_u31
|
||||
// This statement ensures that the sign bit is zero
|
||||
assert (value & sign_mask) == 0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_musl_int63() {
|
||||
max_u63 := i64(0x7FFFFFFFFFFFFFFF)
|
||||
sign_mask := i64(0x8000000000000000)
|
||||
for seed in seeds {
|
||||
mut rng := rand.MuslRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.int63()
|
||||
assert value >= 0
|
||||
assert value <= max_u63
|
||||
assert (value & sign_mask) == 0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_musl_intn() {
|
||||
max := 2525642
|
||||
for seed in seeds {
|
||||
rng := rand.MuslRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.intn(max)
|
||||
assert value >= 0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_musl_i64n() {
|
||||
max := i64(3246727724653636)
|
||||
for seed in seeds {
|
||||
rng := rand.MuslRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.i64n(max)
|
||||
assert value >= 0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_musl_int_in_range() {
|
||||
min := -4252
|
||||
max := 1034
|
||||
for seed in seeds {
|
||||
rng := rand.MuslRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.int_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_musl_i64_in_range() {
|
||||
min := i64(-24095)
|
||||
max := i64(324058)
|
||||
for seed in seeds {
|
||||
rng := rand.MuslRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.i64_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_musl_f32() {
|
||||
for seed in seeds {
|
||||
mut rng := rand.MuslRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f32()
|
||||
assert value >= 0.0
|
||||
assert value < 1.0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_musl_f64() {
|
||||
for seed in seeds {
|
||||
mut rng := rand.MuslRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f64()
|
||||
assert value >= 0.0
|
||||
assert value < 1.0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_musl_f32n() {
|
||||
max := f32(357.0)
|
||||
for seed in seeds {
|
||||
mut rng := rand.MuslRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f32()
|
||||
assert value >= 0.0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_musl_f64n() {
|
||||
max := 1.52e6
|
||||
for seed in seeds {
|
||||
mut rng := rand.MuslRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f64()
|
||||
assert value >= 0.0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_musl_f32_in_range() {
|
||||
min := f32(-24.0)
|
||||
max := f32(125.0)
|
||||
for seed in seeds {
|
||||
mut rng := rand.MuslRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f32()
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_musl_f64_in_range() {
|
||||
min := -548.7
|
||||
max := 5015.2
|
||||
for seed in seeds {
|
||||
mut rng := rand.MuslRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f64()
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
|
@ -1,39 +1,48 @@
|
|||
// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
|
||||
// Use of this source code is governed by an MIT license
|
||||
// that can be found in the LICENSE file.
|
||||
module rand
|
||||
// Ported from http://www.pcg-random.org/download.html
|
||||
// and https://github.com/imneme/pcg-c-basic/blob/master/pcg_basic.c
|
||||
pub struct Pcg32 {
|
||||
|
||||
// Ported from http://www.pcg-random.org/download.html,
|
||||
// https://github.com/imneme/pcg-c-basic/blob/master/pcg_basic.c, and
|
||||
// https://github.com/imneme/pcg-c-basic/blob/master/pcg_basic.h
|
||||
pub struct PCG32RNG {
|
||||
mut:
|
||||
state u64
|
||||
inc u64
|
||||
state u64 = u64(0x853c49e6748fea9b) ^ time_seed_64()
|
||||
inc u64 = u64(0xda3e39cb94b95bdb) ^ time_seed_64()
|
||||
}
|
||||
|
||||
/**
|
||||
* new_pcg32 - a Pcg32 PRNG generator
|
||||
* @param initstate - the initial state of the PRNG.
|
||||
* @param initseq - the stream/step of the PRNG.
|
||||
* @return a new Pcg32 PRNG instance
|
||||
*/
|
||||
|
||||
|
||||
pub fn new_pcg32(initstate u64, initseq u64) Pcg32 {
|
||||
mut rng := Pcg32{
|
||||
}
|
||||
rng.state = u64(0)
|
||||
rng.inc = (initseq<<u64(1)) | u64(1)
|
||||
rng.next()
|
||||
rng.state += initstate
|
||||
rng.next()
|
||||
// TODO: Remove in Phase 2 of reorganizing Random
|
||||
pub fn new_pcg32(init_state, init_seq u64) PCG32RNG {
|
||||
rng := PCG32RNG{}
|
||||
rng.seed([u32(init_state), u32(init_state >> 32), u32(init_seq), u32(init_seq >> 32)])
|
||||
return rng
|
||||
}
|
||||
|
||||
/**
|
||||
* Pcg32.next - update the PRNG state and get back the next random number
|
||||
* @return the generated pseudo random number
|
||||
*/
|
||||
pub fn (mut rng PCG32RNG) bounded_next(bound u32) u32 {
|
||||
return rng.u32n(bound)
|
||||
}
|
||||
|
||||
// rng.seed(seed_data) - seed the PCG32RNG with 4 u32 values.
|
||||
// The first 2 represent the 64-bit initial state as [lower 32 bits, higher 32 bits]
|
||||
// The last 2 represent the 64-bit stream/step of the PRNG.
|
||||
pub fn (mut rng PCG32RNG) seed(seed_data []u32) {
|
||||
if seed_data.len != 4 {
|
||||
eprintln('PCG32RNG needs 4 u32s to be seeded. First two the initial state and the last two the stream/step. Both in little endian format: [lower, higher]')
|
||||
exit(1)
|
||||
}
|
||||
init_state := u64(seed_data[0]) | (u64(seed_data[1]) << 32)
|
||||
init_seq := u64(seed_data[2]) | (u64(seed_data[3]) << 32)
|
||||
rng.state = u64(0)
|
||||
rng.inc = (init_seq << u64(1)) | u64(1)
|
||||
rng.u32()
|
||||
rng.state += init_state
|
||||
rng.u32()
|
||||
}
|
||||
|
||||
// rng.u32() - return a pseudorandom 32 bit unsigned u32
|
||||
[inline]
|
||||
pub fn (mut rng Pcg32) next() u32 {
|
||||
pub fn (mut rng PCG32RNG) u32() u32 {
|
||||
oldstate := rng.state
|
||||
rng.state = oldstate * (6364136223846793005) + rng.inc
|
||||
xorshifted := u32(((oldstate >> u64(18)) ^ oldstate) >> u64(27))
|
||||
|
@ -41,28 +50,185 @@ pub fn (mut rng Pcg32) next() u32 {
|
|||
return ((xorshifted >> rot) | (xorshifted << ((-rot) & u32(31))))
|
||||
}
|
||||
|
||||
/**
|
||||
* Pcg32.bounded_next - update the PRNG state. Get the next number < bound
|
||||
* @param bound - the returned random number will be < bound
|
||||
* @return the generated pseudo random number
|
||||
*/
|
||||
|
||||
|
||||
// rng.u64() - return a pseudorandom 64 bit unsigned u64
|
||||
[inline]
|
||||
pub fn (mut rng Pcg32) bounded_next(bound u32) u32 {
|
||||
pub fn (mut rng PCG32RNG) u64() u64 {
|
||||
return u64(rng.u32()) | (u64(rng.u32()) << 32)
|
||||
}
|
||||
|
||||
// rn.u32n(max) - return a pseudorandom 32 bit unsigned u32 in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng PCG32RNG) u32n(max u32) u32 {
|
||||
if max == 0 {
|
||||
eprintln('max must be positive')
|
||||
exit(1)
|
||||
}
|
||||
// To avoid bias, we need to make the range of the RNG a multiple of
|
||||
// bound, which we do by dropping output less than a threshold.
|
||||
threshold := (-bound % bound)
|
||||
// max, which we do by dropping output less than a threshold.
|
||||
threshold := (-max % max)
|
||||
// Uniformity guarantees that loop below will terminate. In practice, it
|
||||
// should usually terminate quickly; on average (assuming all bounds are
|
||||
// should usually terminate quickly; on average (assuming all max's are
|
||||
// equally likely), 82.25% of the time, we can expect it to require just
|
||||
// one iteration. In practice, bounds are typically small and only a
|
||||
// one iteration. In practice, max's are typically small and only a
|
||||
// tiny amount of the range is eliminated.
|
||||
for {
|
||||
r := rng.next()
|
||||
r := rng.u32()
|
||||
if r >= threshold {
|
||||
return (r % bound)
|
||||
return (r % max)
|
||||
}
|
||||
}
|
||||
return u32(0)
|
||||
}
|
||||
|
||||
// rn.u64n(max) - return a pseudorandom 64 bit unsigned u64 in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng PCG32RNG) u64n(max u64) u64 {
|
||||
if max == 0 {
|
||||
eprintln('max must be positive')
|
||||
exit(1)
|
||||
}
|
||||
threshold := (-max % max)
|
||||
for {
|
||||
r := rng.u64()
|
||||
if r >= threshold {
|
||||
return (r % max)
|
||||
}
|
||||
}
|
||||
return u64(0)
|
||||
}
|
||||
|
||||
// rn.u32_in_range(min, max) - return a pseudorandom 32 bit unsigned u32 in [min, max)
|
||||
[inline]
|
||||
pub fn (mut rng PCG32RNG) u32_in_range(min, max u64) u64 {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min')
|
||||
exit(1)
|
||||
}
|
||||
return min + rng.u32n(max - min)
|
||||
}
|
||||
|
||||
// rn.u64_in_range(min, max) - return a pseudorandom 64 bit unsigned u64 in [min, max)
|
||||
[inline]
|
||||
pub fn (mut rng PCG32RNG) u64_in_range(min, max u64) u64 {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min')
|
||||
exit(1)
|
||||
}
|
||||
return min + rng.u64n(max - min)
|
||||
}
|
||||
|
||||
// rng.int() - return a 32-bit signed (possibly negative) int
|
||||
[inline]
|
||||
pub fn (mut rng PCG32RNG) int() int {
|
||||
return int(rng.u32())
|
||||
}
|
||||
|
||||
// rng.i64() - return a 64-bit signed (possibly negative) i64
|
||||
[inline]
|
||||
pub fn (mut rng PCG32RNG) i64() i64 {
|
||||
return i64(rng.u64())
|
||||
}
|
||||
|
||||
// rng.int31() - return a 31bit positive pseudorandom integer
|
||||
[inline]
|
||||
pub fn (mut rng PCG32RNG) int31() int {
|
||||
return int(rng.u32() >> 1)
|
||||
}
|
||||
|
||||
// rng.int63() - return a 63bit positive pseudorandom integer
|
||||
[inline]
|
||||
pub fn (mut rng PCG32RNG) int63() i64 {
|
||||
return i64(rng.u64() >> 1)
|
||||
}
|
||||
|
||||
// rng.intn(max) - return a 32bit positive int in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng PCG32RNG) intn(max int) int {
|
||||
if max <= 0 {
|
||||
eprintln('max has to be positive.')
|
||||
exit(1)
|
||||
}
|
||||
return int(rng.u32n(max))
|
||||
}
|
||||
|
||||
// rng.i64n(max) - return a 64bit positive i64 in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng PCG32RNG) i64n(max i64) i64 {
|
||||
if max <= 0 {
|
||||
eprintln('max has to be positive.')
|
||||
exit(1)
|
||||
}
|
||||
return i64(rng.u64n(max))
|
||||
}
|
||||
|
||||
// rng.int_in_range(min, max) - return a 32bit positive int in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng PCG32RNG) int_in_range(min, max int) int {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min.')
|
||||
exit(1)
|
||||
}
|
||||
return min + rng.intn(max - min)
|
||||
}
|
||||
|
||||
// rng.i64_in_range(min, max) - return a 64bit positive i64 in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng PCG32RNG) i64_in_range(min, max i64) i64 {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min.')
|
||||
exit(1)
|
||||
}
|
||||
return min + rng.i64n(max - min)
|
||||
}
|
||||
|
||||
// rng.f32() returns a pseudorandom f32 value between 0.0 (inclusive) and 1.0 (exclusive) i.e [0, 1)
|
||||
[inline]
|
||||
pub fn (mut rng PCG32RNG) f32() f32 {
|
||||
return f32(rng.u32()) / max_u32_as_f32
|
||||
}
|
||||
|
||||
// rng.f64() returns a pseudorandom f64 value between 0.0 (inclusive) and 1.0 (exclusive) i.e [0, 1)
|
||||
[inline]
|
||||
pub fn (mut rng PCG32RNG) f64() f64 {
|
||||
return f64(rng.u64()) / max_u64_as_f64
|
||||
}
|
||||
|
||||
// rng.f32n() returns a pseudorandom f32 value in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng PCG32RNG) f32n(max f32) f32 {
|
||||
if max <= 0 {
|
||||
eprintln('max has to be positive.')
|
||||
exit(1)
|
||||
}
|
||||
return rng.f32() * max
|
||||
}
|
||||
|
||||
// rng.f64n() returns a pseudorandom f64 value in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng PCG32RNG) f64n(max f64) f64 {
|
||||
if max <= 0 {
|
||||
eprintln('max has to be positive.')
|
||||
exit(1)
|
||||
}
|
||||
return rng.f64() * max
|
||||
}
|
||||
|
||||
// rng.f32_in_range(min, max) returns a pseudorandom f32 that lies in [min, max)
|
||||
[inline]
|
||||
pub fn (mut rng PCG32RNG) f32_in_range(min, max f32) f32 {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min')
|
||||
exit(1)
|
||||
}
|
||||
return min + rng.f32n(max - min)
|
||||
}
|
||||
|
||||
// rng.i64_in_range(min, max) returns a pseudorandom i64 that lies in [min, max)
|
||||
[inline]
|
||||
pub fn (mut rng PCG32RNG) f64_in_range(min, max f64) f64 {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min')
|
||||
exit(1)
|
||||
}
|
||||
return min + rng.f64n(max - min)
|
||||
}
|
||||
|
|
|
@ -1,36 +1,328 @@
|
|||
|
||||
import rand
|
||||
import time
|
||||
import math
|
||||
|
||||
fn show_u32s(a []u32){
|
||||
mut res := []string{}
|
||||
for x in a {
|
||||
res << x.str()
|
||||
}
|
||||
print('[')
|
||||
print(res.join(', '))
|
||||
println(']')
|
||||
}
|
||||
fn gen_randoms(initstate i64, initseq i64, bound int) []u32 {
|
||||
mut randoms := [u32(0)].repeat(20)
|
||||
mut rnd := rand.new_pcg32( u64(initstate), u64(initseq) )
|
||||
const (
|
||||
range_limit = 40
|
||||
value_count = 1000
|
||||
seeds = [[u32(42), 242, 267, 14195], [u32(256), 340, 1451, 1505]]
|
||||
)
|
||||
|
||||
const (
|
||||
sample_size = 1000
|
||||
stats_epsilon = 0.05
|
||||
inv_sqrt_12 = 1.0 / math.sqrt(12)
|
||||
)
|
||||
|
||||
fn gen_randoms(seed_data []u32, bound int) []u32 {
|
||||
mut randoms := []u32{len: 20}
|
||||
mut rng := rand.PCG32RNG{}
|
||||
rng.seed(seed_data)
|
||||
for i in 0 .. 20 {
|
||||
randoms[i] = rnd.bounded_next(u32(bound))
|
||||
randoms[i] = rng.u32n(u32(bound))
|
||||
}
|
||||
return randoms
|
||||
}
|
||||
|
||||
fn test_pcg32_reproducibility() {
|
||||
t := time.ticks()
|
||||
tseq := t % 23237671
|
||||
println('t: $t | tseq: $tseq')
|
||||
randoms1 := gen_randoms(t, tseq, 1000)
|
||||
randoms2 := gen_randoms(t, tseq, 1000)
|
||||
randoms1 := gen_randoms(rand.time_seed_array(4), 1000)
|
||||
randoms2 := gen_randoms(rand.time_seed_array(4), 1000)
|
||||
assert randoms1.len == randoms2.len
|
||||
show_u32s(randoms1)
|
||||
show_u32s(randoms2)
|
||||
len := randoms1.len
|
||||
for i in 0 .. len {
|
||||
assert randoms1[i] == randoms2[i]
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: use the `in` syntax and remove this function
|
||||
// after generics has been completely implemented
|
||||
fn found(value u64, arr []u64) bool {
|
||||
for item in arr {
|
||||
if value == item {
|
||||
return true
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
fn test_pcg32_variability() {
|
||||
// If this test fails and if it is certainly not the implementation
|
||||
// at fault, try changing the seed values. Repeated values are
|
||||
// improbable but not impossible.
|
||||
for seed in seeds {
|
||||
mut rng := rand.PCG32RNG{}
|
||||
rng.seed(seed)
|
||||
mut values := []u64{cap: value_count}
|
||||
for i in 0 .. value_count {
|
||||
value := rng.u64()
|
||||
assert !found(value, values)
|
||||
assert values.len == i
|
||||
values << value
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn check_uniformity_u64(rng rand.PCG32RNG, range u64) {
|
||||
range_f64 := f64(range)
|
||||
expected_mean := range_f64 / 2.0
|
||||
mut variance := 0.0
|
||||
for _ in 0 .. sample_size {
|
||||
diff := f64(rng.u64n(range)) - expected_mean
|
||||
variance += diff * diff
|
||||
}
|
||||
variance /= sample_size - 1
|
||||
sigma := math.sqrt(variance)
|
||||
expected_sigma := range_f64 * inv_sqrt_12
|
||||
error := (sigma - expected_sigma) / expected_sigma
|
||||
assert math.abs(error) < stats_epsilon
|
||||
}
|
||||
|
||||
fn test_pcg32_uniformity_u64() {
|
||||
ranges := [14019545, 80240, 130]
|
||||
for seed in seeds {
|
||||
mut rng := rand.PCG32RNG{}
|
||||
rng.seed(seed)
|
||||
for range in ranges {
|
||||
check_uniformity_u64(rng, range)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn check_uniformity_f64(rng rand.PCG32RNG) {
|
||||
expected_mean := 0.5
|
||||
mut variance := 0.0
|
||||
for _ in 0 .. sample_size {
|
||||
diff := rng.f64() - expected_mean
|
||||
variance += diff * diff
|
||||
}
|
||||
variance /= sample_size - 1
|
||||
sigma := math.sqrt(variance)
|
||||
expected_sigma := inv_sqrt_12
|
||||
error := (sigma - expected_sigma) / expected_sigma
|
||||
assert math.abs(error) < stats_epsilon
|
||||
}
|
||||
|
||||
fn test_pcg32_uniformity_f64() {
|
||||
// The f64 version
|
||||
for seed in seeds {
|
||||
mut rng := rand.PCG32RNG{}
|
||||
rng.seed(seed)
|
||||
check_uniformity_f64(rng)
|
||||
}
|
||||
}
|
||||
|
||||
fn test_pcg32_u32n() {
|
||||
max := 16384
|
||||
for seed in seeds {
|
||||
mut rng := rand.PCG32RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.u32n(max)
|
||||
assert value >= 0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_pcg32_u64n() {
|
||||
max := u64(379091181005)
|
||||
for seed in seeds {
|
||||
mut rng := rand.PCG32RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.u64n(max)
|
||||
assert value >= 0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_pcg32_u32_in_range() {
|
||||
max := 484468466
|
||||
min := 316846
|
||||
for seed in seeds {
|
||||
mut rng := rand.PCG32RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.u32_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_pcg32_u64_in_range() {
|
||||
max := u64(216468454685163)
|
||||
min := u64(6848646868)
|
||||
for seed in seeds {
|
||||
mut rng := rand.PCG32RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.u64_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_pcg32_int31() {
|
||||
max_u31 := 0x7FFFFFFF
|
||||
sign_mask := 0x80000000
|
||||
for seed in seeds {
|
||||
mut rng := rand.PCG32RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.int31()
|
||||
assert value >= 0
|
||||
assert value <= max_u31
|
||||
// This statement ensures that the sign bit is zero
|
||||
assert (value & sign_mask) == 0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_pcg32_int63() {
|
||||
max_u63 := i64(0x7FFFFFFFFFFFFFFF)
|
||||
sign_mask := i64(0x8000000000000000)
|
||||
for seed in seeds {
|
||||
mut rng := rand.PCG32RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.int63()
|
||||
assert value >= 0
|
||||
assert value <= max_u63
|
||||
assert (value & sign_mask) == 0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_pcg32_intn() {
|
||||
max := 2525642
|
||||
for seed in seeds {
|
||||
rng := rand.PCG32RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.intn(max)
|
||||
assert value >= 0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_pcg32_i64n() {
|
||||
max := i64(3246727724653636)
|
||||
for seed in seeds {
|
||||
rng := rand.PCG32RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.i64n(max)
|
||||
assert value >= 0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_pcg32_int_in_range() {
|
||||
min := -4252
|
||||
max := 1034
|
||||
for seed in seeds {
|
||||
rng := rand.PCG32RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.int_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_pcg32_i64_in_range() {
|
||||
min := i64(-24095)
|
||||
max := i64(324058)
|
||||
for seed in seeds {
|
||||
rng := rand.PCG32RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.i64_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_pcg32_f32() {
|
||||
for seed in seeds {
|
||||
mut rng := rand.PCG32RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f32()
|
||||
assert value >= 0.0
|
||||
assert value < 1.0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_pcg32_f64() {
|
||||
for seed in seeds {
|
||||
mut rng := rand.PCG32RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f64()
|
||||
assert value >= 0.0
|
||||
assert value < 1.0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_pcg32_f32n() {
|
||||
max := f32(357.0)
|
||||
for seed in seeds {
|
||||
mut rng := rand.PCG32RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f32()
|
||||
assert value >= 0.0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_pcg32_f64n() {
|
||||
max := 1.52e6
|
||||
for seed in seeds {
|
||||
mut rng := rand.PCG32RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f64()
|
||||
assert value >= 0.0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_pcg32_f32_in_range() {
|
||||
min := f32(-24.0)
|
||||
max := f32(125.0)
|
||||
for seed in seeds {
|
||||
mut rng := rand.PCG32RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f32()
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_pcg32_f64_in_range() {
|
||||
min := -548.7
|
||||
max := 5015.2
|
||||
for seed in seeds {
|
||||
mut rng := rand.PCG32RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f64()
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
131
vlib/rand/rand.v
131
vlib/rand/rand.v
|
@ -3,8 +3,12 @@
|
|||
// that can be found in the LICENSE file.
|
||||
module rand
|
||||
|
||||
fn C.rand() int
|
||||
|
||||
// TODO: Remove these functions once done:
|
||||
// 1. C.rand()
|
||||
// 2. seed()
|
||||
// 3. next()
|
||||
// 4. rand_r()
|
||||
// fn C.rand() int
|
||||
pub fn seed(s int) {
|
||||
C.srand(s)
|
||||
}
|
||||
|
@ -23,32 +27,155 @@ pub fn rand_r(seed &int) int {
|
|||
return ns & 0x7fffffff
|
||||
}
|
||||
|
||||
const (
|
||||
default_rng = new_default({})
|
||||
)
|
||||
|
||||
pub struct PRNGConfigStruct {
|
||||
seed []u32 = time_seed_array(2)
|
||||
}
|
||||
|
||||
pub fn new_default(config PRNGConfigStruct) &WyRandRNG {
|
||||
rng := &WyRandRNG{}
|
||||
rng.seed(config.seed)
|
||||
return rng
|
||||
}
|
||||
|
||||
|
||||
// u32() - returns a uniformly distributed pseudorandom 32-bit unsigned u32
|
||||
pub fn u32() u32 {
|
||||
return default_rng.u32()
|
||||
}
|
||||
|
||||
// u64() - returns a uniformly distributed pseudorandom 64-bit unsigned u64
|
||||
pub fn u64() u64 {
|
||||
return default_rng.u64()
|
||||
}
|
||||
|
||||
// u32n(max) - returns a uniformly distributed pseudorandom 32-bit unsigned u32 in [0, max)
|
||||
pub fn u32n(max u32) u32 {
|
||||
return default_rng.u32n(max)
|
||||
}
|
||||
|
||||
// u64n(max) - returns a uniformly distributed pseudorandom 64-bit unsigned u64 in [0, max)
|
||||
pub fn u64n(max u64) u64 {
|
||||
return default_rng.u64n(max)
|
||||
}
|
||||
|
||||
// u32n() - returns a uniformly distributed pseudorandom 32-bit unsigned u32 in [min, max)
|
||||
pub fn u32_in_range(min, max u32) u32 {
|
||||
return default_rng.u32_in_range(min, max)
|
||||
}
|
||||
|
||||
// u64_in_range(min, max) - returns a uniformly distributed pseudorandom 64-bit unsigned u64 in [min, max)
|
||||
pub fn u64_in_range(min, max u64) u64 {
|
||||
return default_rng.u64_in_range(min, max)
|
||||
}
|
||||
|
||||
// int() - returns a uniformly distributed pseudorandom 32-bit signed (possibly negative) int
|
||||
pub fn int() int {
|
||||
return default_rng.int()
|
||||
}
|
||||
|
||||
// intn(max) - returns a uniformly distributed pseudorandom 32-bit signed positive int in [0, max)
|
||||
pub fn intn(max int) int {
|
||||
return default_rng.intn(max)
|
||||
}
|
||||
|
||||
// int_in_range(min, max) - returns a uniformly distributed pseudorandom
|
||||
// 32-bit signed int in [min, max)
|
||||
pub fn int_in_range(min, max int) int {
|
||||
return default_rng.int_in_range(min, max)
|
||||
}
|
||||
|
||||
// int31() - returns a uniformly distributed pseudorandom 31-bit signed positive int
|
||||
pub fn int31() int {
|
||||
return default_rng.int31()
|
||||
}
|
||||
|
||||
// i64() - returns a uniformly distributed pseudorandom 64-bit signed (possibly negative) i64
|
||||
pub fn i64() i64 {
|
||||
return default_rng.i64()
|
||||
}
|
||||
|
||||
// i64n(max) - returns a uniformly distributed pseudorandom 64-bit signed positive i64 in [0, max)
|
||||
pub fn i64n(max i64) i64 {
|
||||
return default_rng.i64n(max)
|
||||
}
|
||||
|
||||
// i64_in_range(min, max) - returns a uniformly distributed pseudorandom
|
||||
// 64-bit signed int in [min, max)
|
||||
pub fn i64_in_range(min, max i64) i64 {
|
||||
return default_rng.i64_in_range(min, max)
|
||||
}
|
||||
|
||||
// int63() - returns a uniformly distributed pseudorandom 63-bit signed positive int
|
||||
pub fn int63() i64 {
|
||||
return default_rng.int63()
|
||||
}
|
||||
|
||||
// f32() - returns a uniformly distributed 32-bit floating point in [0, 1)
|
||||
pub fn f32() f32 {
|
||||
return default_rng.f32()
|
||||
}
|
||||
|
||||
// f64() - returns a uniformly distributed 64-bit floating point in [0, 1)
|
||||
pub fn f64() f64 {
|
||||
return default_rng.f64()
|
||||
}
|
||||
|
||||
// f32n() - returns a uniformly distributed 32-bit floating point in [0, max)
|
||||
pub fn f32n(max f32) f32 {
|
||||
return default_rng.f32n(max)
|
||||
}
|
||||
|
||||
// f64n() - returns a uniformly distributed 64-bit floating point in [0, max)
|
||||
pub fn f64n(max f64) f64 {
|
||||
return default_rng.f64n(max)
|
||||
}
|
||||
|
||||
// f32_in_range(min, max) - returns a uniformly distributed 32-bit floating point in [min, max)
|
||||
pub fn f32_in_range(min, max f32) f32 {
|
||||
return default_rng.f32_in_range(min, max)
|
||||
}
|
||||
|
||||
// f64_in_range(min, max) - returns a uniformly distributed 64-bit floating point in [min, max)
|
||||
pub fn f64_in_range(min, max f64) f64 {
|
||||
return default_rng.f64_in_range(min, max)
|
||||
}
|
||||
|
||||
// rand_f32 return a random f32 between 0 and max
|
||||
[deprecated]
|
||||
pub fn rand_f32(max f32) f32 {
|
||||
return rand_uniform_f32() * max
|
||||
}
|
||||
|
||||
// rand_f32 return a random f32 in range min and max
|
||||
[deprecated]
|
||||
pub fn rand_f32_in_range(min, max f32) f32 {
|
||||
return min + rand_uniform_f32() * (max - min)
|
||||
}
|
||||
|
||||
// rand_f64 return a random f64 between 0 (inclusive) and max (exclusive)
|
||||
[deprecated]
|
||||
pub fn rand_f64(max f64) f64 {
|
||||
return rand_uniform_f64() * max
|
||||
}
|
||||
|
||||
// rand_f64 return a random f64 in range min (inclusive) and max (exclusive)
|
||||
[deprecated]
|
||||
pub fn rand_f64_in_range(min, max f64) f64 {
|
||||
return min + rand_uniform_f64() * (max - min)
|
||||
}
|
||||
|
||||
// rand_uniform_f32 returns a uniformly distributed f32 in the range 0 (inclusive) and 1 (exclusive)
|
||||
[deprecated]
|
||||
pub fn rand_uniform_f32() f32 {
|
||||
return f32(C.rand()) / f32(C.RAND_MAX)
|
||||
}
|
||||
|
||||
// rand_uniform_f64 returns a uniformly distributed f64 in the range 0 (inclusive) and 1 (exclusive)
|
||||
[deprecated]
|
||||
pub fn rand_uniform_f64() f64 {
|
||||
return f64(C.rand()) / f64(C.RAND_MAX)
|
||||
}
|
|
@ -1,4 +1,5 @@
|
|||
import rand
|
||||
import math
|
||||
|
||||
const (
|
||||
rnd_count = 40
|
||||
|
@ -53,7 +54,7 @@ fn assert_randoms_equal(r1, r2 []int) {
|
|||
}
|
||||
}
|
||||
|
||||
fn test_rand_f32() {
|
||||
fn test_rand_f32_old() {
|
||||
for seed in seeds {
|
||||
rand.seed(seed)
|
||||
for _ in 0 .. rnd_count {
|
||||
|
@ -64,7 +65,7 @@ fn test_rand_f32() {
|
|||
}
|
||||
}
|
||||
|
||||
fn test_rand_f32_in_range() {
|
||||
fn test_rand_f32_in_range_old() {
|
||||
for seed in seeds {
|
||||
rand.seed(seed)
|
||||
for _ in 0 .. rnd_count {
|
||||
|
@ -75,7 +76,7 @@ fn test_rand_f32_in_range() {
|
|||
}
|
||||
}
|
||||
|
||||
fn test_rand_f64() {
|
||||
fn test_rand_f64_old() {
|
||||
for seed in seeds {
|
||||
rand.seed(seed)
|
||||
for _ in 0 .. rnd_count {
|
||||
|
@ -86,7 +87,7 @@ fn test_rand_f64() {
|
|||
}
|
||||
}
|
||||
|
||||
fn test_rand_f64_in_range() {
|
||||
fn test_rand_f64_in_range_old() {
|
||||
for seed in seeds {
|
||||
rand.seed(seed)
|
||||
for _ in 0 .. rnd_count {
|
||||
|
@ -118,3 +119,145 @@ fn test_rand_uniform_f64() {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_rand_u32n() {
|
||||
max := u32(4287502)
|
||||
for _ in 0 .. rnd_count {
|
||||
assert rand.u32n(max) < max
|
||||
}
|
||||
}
|
||||
|
||||
fn test_rand_u64n() {
|
||||
max := u64(23442353534587502)
|
||||
for _ in 0 .. rnd_count {
|
||||
assert rand.u64n(max) < max
|
||||
}
|
||||
}
|
||||
|
||||
fn test_rand_u32_in_range() {
|
||||
min := u32(5256)
|
||||
max := u32(4287502)
|
||||
for _ in 0 .. rnd_count {
|
||||
value := rand.u32_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
|
||||
fn test_rand_u64_in_range() {
|
||||
min := u64(4265266246)
|
||||
max := u64(23442353534587502)
|
||||
for _ in 0 .. rnd_count {
|
||||
value := rand.u64_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
|
||||
fn test_rand_intn() {
|
||||
max := 720948723
|
||||
for _ in 0 .. rnd_count {
|
||||
value := rand.intn(max)
|
||||
assert value >= 0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
|
||||
fn test_rand_i64n() {
|
||||
max := i64(209487239094)
|
||||
for _ in 0 .. rnd_count {
|
||||
value := rand.i64n(max)
|
||||
assert value >= 0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
|
||||
fn test_rand_int_in_range() {
|
||||
min := -34058
|
||||
max := -10542
|
||||
for _ in 0 .. rnd_count {
|
||||
value := rand.int_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
|
||||
fn test_rand_i64_in_range() {
|
||||
min := i64(-5026245)
|
||||
max := i64(209487239094)
|
||||
for _ in 0 .. rnd_count {
|
||||
value := rand.i64_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
|
||||
fn test_rand_int31() {
|
||||
for _ in 0 .. rnd_count {
|
||||
value := rand.int31()
|
||||
assert value >= 0
|
||||
assert value <= math.max_i32
|
||||
}
|
||||
}
|
||||
|
||||
fn test_rand_int63() {
|
||||
for _ in 0 .. rnd_count {
|
||||
value := rand.int63()
|
||||
assert value >= 0
|
||||
assert value <= math.max_i64
|
||||
}
|
||||
}
|
||||
|
||||
fn test_rand_f32() {
|
||||
for _ in 0 .. rnd_count {
|
||||
value := rand.f32()
|
||||
assert value >= 0.0
|
||||
assert value < 1.0
|
||||
}
|
||||
}
|
||||
|
||||
fn test_rand_f64() {
|
||||
for _ in 0 .. rnd_count {
|
||||
value := rand.f64()
|
||||
assert value >= 0.0
|
||||
assert value < 1.0
|
||||
}
|
||||
}
|
||||
|
||||
fn test_rand_f32n() {
|
||||
max := f32(34.52)
|
||||
for _ in 0 .. rnd_count {
|
||||
value := rand.f32n(max)
|
||||
assert value >= 0.0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
|
||||
fn test_rand_f64n() {
|
||||
max := 3495.2
|
||||
for _ in 0 .. rnd_count {
|
||||
value := rand.f64n(max)
|
||||
assert value >= 0.0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
|
||||
fn test_rand_f32_in_range() {
|
||||
min := f32(-10.4)
|
||||
max := f32(43.2)
|
||||
for _ in 0 .. rnd_count {
|
||||
value := rand.f32_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
|
||||
fn test_rand_f64_in_range() {
|
||||
min := -10980.4
|
||||
max := -2.0
|
||||
for _ in 0 .. rnd_count {
|
||||
value := rand.f64_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
|
@ -1,30 +1,45 @@
|
|||
// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
|
||||
// Use of this source code is governed by an MIT license
|
||||
// that can be found in the LICENSE file.
|
||||
module rand
|
||||
|
||||
// Ported from http://xoshiro.di.unimi.it/splitmix64.c
|
||||
struct Splitmix64 {
|
||||
pub struct SplitMix64RNG {
|
||||
mut:
|
||||
state u64
|
||||
state u64 = time_seed_64()
|
||||
has_extra bool = false
|
||||
extra u32
|
||||
}
|
||||
|
||||
/**
|
||||
* new_splitmix64 - a Splitmix64 PRNG generator
|
||||
* @param seed the initial seed of the PRNG.
|
||||
* @return a new Splitmix64 PRNG instance
|
||||
*/
|
||||
|
||||
|
||||
pub fn new_splitmix64(seed u64) Splitmix64 {
|
||||
return Splitmix64{
|
||||
seed}
|
||||
// rng.seed(seed_data) sets the seed of the accepting SplitMix64RNG to the given data
|
||||
// in little-endian format (i.e. lower 32 bits are in [0] and higher 32 bits in [1]).
|
||||
pub fn (mut rng SplitMix64RNG) seed(seed_data []u32) {
|
||||
if seed_data.len != 2 {
|
||||
eprintln('SplitMix64RNG needs 2 32-bit unsigned integers as the seed.')
|
||||
exit(1)
|
||||
}
|
||||
rng.state = seed_data[0] | (u64(seed_data[1]) << 32)
|
||||
rng.has_extra = false
|
||||
}
|
||||
|
||||
/**
|
||||
* Splitmix64.next - update the PRNG state and get back the next random number
|
||||
* @return the generated pseudo random number
|
||||
*/
|
||||
|
||||
|
||||
// rng.u32() updates the PRNG state and returns the next pseudorandom u32
|
||||
[inline]
|
||||
pub fn (mut rng Splitmix64) next() u64 {
|
||||
pub fn (mut rng SplitMix64RNG) u32() u32 {
|
||||
if rng.has_extra {
|
||||
rng.has_extra = false
|
||||
return rng.extra
|
||||
}
|
||||
full_value := rng.u64()
|
||||
lower := u32(full_value & lower_mask)
|
||||
upper := u32(full_value >> 32)
|
||||
rng.extra = upper
|
||||
rng.has_extra = true
|
||||
return lower
|
||||
}
|
||||
|
||||
// rng.u64() updates the PRNG state and returns the next pseudorandom u64
|
||||
[inline]
|
||||
pub fn (mut rng SplitMix64RNG) u64() u64 {
|
||||
rng.state += (0x9e3779b97f4a7c15)
|
||||
mut z := rng.state
|
||||
z = (z ^ ((z >> u64(30)))) * (0xbf58476d1ce4e5b9)
|
||||
|
@ -32,21 +47,176 @@ pub fn (mut rng Splitmix64) next() u64 {
|
|||
return z ^ (z >> (31))
|
||||
}
|
||||
|
||||
/**
|
||||
* Splitmix64.bounded_next - Get the next random number < bound
|
||||
* @param bound - the returned random number will be < bound
|
||||
* @return the generated pseudo random number
|
||||
*/
|
||||
|
||||
|
||||
// rng.u32n(bound) returns a pseudorandom u32 less than the bound
|
||||
[inline]
|
||||
pub fn (mut rng Splitmix64) bounded_next(bound u64) u64 {
|
||||
pub fn (mut rng SplitMix64RNG) u32n(bound u32) u32 {
|
||||
// This function is kept similar to the u64 version
|
||||
if bound == 0 {
|
||||
eprintln('max must be non-zero')
|
||||
exit(1)
|
||||
}
|
||||
threshold := -bound % bound
|
||||
for {
|
||||
r := rng.next()
|
||||
r := rng.u32()
|
||||
if r >= threshold {
|
||||
return r % bound
|
||||
}
|
||||
}
|
||||
return u32(0)
|
||||
}
|
||||
|
||||
// rng.u64n(bound) returns a pseudorandom u64 less than the bound
|
||||
[inline]
|
||||
pub fn (mut rng SplitMix64RNG) u64n(bound u64) u64 {
|
||||
// See pcg32.v for explanation of comment. This algorithm
|
||||
// existed before the refactoring.
|
||||
if bound == 0 {
|
||||
eprintln('max must be non-zero')
|
||||
exit(1)
|
||||
}
|
||||
threshold := -bound % bound
|
||||
for {
|
||||
r := rng.u64()
|
||||
if r >= threshold {
|
||||
return r % bound
|
||||
}
|
||||
}
|
||||
return u64(0)
|
||||
}
|
||||
|
||||
// rng.u32n(min, max) returns a pseudorandom u32 value that is guaranteed to be in [min, max)
|
||||
[inline]
|
||||
pub fn (mut rng SplitMix64RNG) u32_in_range(min, max u32) u32 {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min')
|
||||
exit(1)
|
||||
}
|
||||
return min + rng.u32n(max - min)
|
||||
}
|
||||
|
||||
// rng.u64n(min, max) returns a pseudorandom u64 value that is guaranteed to be in [min, max)
|
||||
[inline]
|
||||
pub fn (mut rng SplitMix64RNG) u64_in_range(min, max u64) u64 {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min')
|
||||
exit(1)
|
||||
}
|
||||
return min + rng.u64n(max - min)
|
||||
}
|
||||
|
||||
// rng.int() returns a pseudorandom 32-bit int (which may be negative)
|
||||
[inline]
|
||||
pub fn (mut rng SplitMix64RNG) int() int {
|
||||
return int(rng.u32())
|
||||
}
|
||||
|
||||
// rng.i64() returns a pseudorandom 64-bit i64 (which may be negative)
|
||||
[inline]
|
||||
pub fn (mut rng SplitMix64RNG) i64() i64 {
|
||||
return i64(rng.u64())
|
||||
}
|
||||
|
||||
// rng.int31() returns a pseudorandom 31-bit int which is non-negative
|
||||
[inline]
|
||||
pub fn (mut rng SplitMix64RNG) int31() int {
|
||||
return int(rng.u32() & u31_mask) // Set the 32nd bit to 0.
|
||||
}
|
||||
|
||||
// rng.int63() returns a pseudorandom 63-bit int which is non-negative
|
||||
[inline]
|
||||
pub fn (mut rng SplitMix64RNG) int63() i64 {
|
||||
return i64(rng.u64() & u63_mask) // Set the 64th bit to 0.
|
||||
}
|
||||
|
||||
// rng.intn(max) returns a pseudorandom int that lies in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng SplitMix64RNG) intn(max int) int {
|
||||
if max <= 0 {
|
||||
eprintln('max has to be positive.')
|
||||
exit(1)
|
||||
}
|
||||
return int(rng.u32n(max))
|
||||
}
|
||||
|
||||
// rng.i64n(max) returns a pseudorandom int that lies in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng SplitMix64RNG) i64n(max i64) i64 {
|
||||
if max <= 0 {
|
||||
eprintln('max has to be positive.')
|
||||
exit(1)
|
||||
}
|
||||
return i64(rng.u64n(max))
|
||||
}
|
||||
|
||||
// rng.int_in_range(min, max) returns a pseudorandom int that lies in [min, max)
|
||||
[inline]
|
||||
pub fn (mut rng SplitMix64RNG) int_in_range(min, max int) int {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min')
|
||||
exit(1)
|
||||
}
|
||||
// This supports negative ranges like [-10, -5) because the difference is positive
|
||||
return min + rng.intn(max - min)
|
||||
}
|
||||
|
||||
// rng.i64_in_range(min, max) returns a pseudorandom i64 that lies in [min, max)
|
||||
[inline]
|
||||
pub fn (mut rng SplitMix64RNG) i64_in_range(min, max i64) i64 {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min')
|
||||
exit(1)
|
||||
}
|
||||
return min + rng.i64n(max - min)
|
||||
}
|
||||
|
||||
// rng.f32() returns a pseudorandom f32 value between 0.0 (inclusive) and 1.0 (exclusive) i.e [0, 1)
|
||||
[inline]
|
||||
pub fn (mut rng SplitMix64RNG) f32() f32 {
|
||||
return f32(rng.u32()) / max_u32_as_f32
|
||||
}
|
||||
|
||||
// rng.f64() returns a pseudorandom f64 value between 0.0 (inclusive) and 1.0 (exclusive) i.e [0, 1)
|
||||
[inline]
|
||||
pub fn (mut rng SplitMix64RNG) f64() f64 {
|
||||
return f64(rng.u64()) / max_u64_as_f64
|
||||
}
|
||||
|
||||
// rng.f32n() returns a pseudorandom f32 value in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng SplitMix64RNG) f32n(max f32) f32 {
|
||||
if max <= 0 {
|
||||
eprintln('max has to be positive.')
|
||||
exit(1)
|
||||
}
|
||||
return rng.f32() * max
|
||||
}
|
||||
|
||||
// rng.f64n() returns a pseudorandom f64 value in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng SplitMix64RNG) f64n(max f64) f64 {
|
||||
if max <= 0 {
|
||||
eprintln('max has to be positive.')
|
||||
exit(1)
|
||||
}
|
||||
return rng.f64() * max
|
||||
}
|
||||
|
||||
// rng.f32_in_range(min, max) returns a pseudorandom f32 that lies in [min, max)
|
||||
[inline]
|
||||
pub fn (mut rng SplitMix64RNG) f32_in_range(min, max f32) f32 {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min')
|
||||
exit(1)
|
||||
}
|
||||
return min + rng.f32n(max - min)
|
||||
}
|
||||
|
||||
// rng.i64_in_range(min, max) returns a pseudorandom i64 that lies in [min, max)
|
||||
[inline]
|
||||
pub fn (mut rng SplitMix64RNG) f64_in_range(min, max f64) f64 {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min')
|
||||
exit(1)
|
||||
}
|
||||
return min + rng.f64n(max - min)
|
||||
}
|
||||
|
|
|
@ -1,36 +1,330 @@
|
|||
|
||||
import rand
|
||||
import time
|
||||
import math
|
||||
|
||||
fn show_u64s(a []u64){
|
||||
mut res := []string{}
|
||||
for x in a {
|
||||
res << x.str()
|
||||
}
|
||||
print('[')
|
||||
print(res.join(', '))
|
||||
println(']')
|
||||
}
|
||||
const (
|
||||
range_limit = 40
|
||||
value_count = 1000
|
||||
seeds = [[u32(42), 0], [u32(256), 0]]
|
||||
)
|
||||
|
||||
fn gen_randoms(seed i64, bound int) []u64 {
|
||||
const (
|
||||
sample_size = 1000
|
||||
stats_epsilon = 0.05
|
||||
inv_sqrt_12 = 1.0 / math.sqrt(12)
|
||||
)
|
||||
|
||||
fn gen_randoms(seed_data []u32, bound int) []u64 {
|
||||
bound_u64 := u64(bound)
|
||||
mut randoms := [u64(0)].repeat(20)
|
||||
mut rnd := rand.new_splitmix64( u64(seed) )
|
||||
mut rnd := rand.SplitMix64RNG{}
|
||||
rnd.seed(seed_data)
|
||||
for i in 0 .. 20 {
|
||||
randoms[i] = rnd.bounded_next(u64(bound))
|
||||
randoms[i] = rnd.u64n(bound_u64)
|
||||
}
|
||||
return randoms
|
||||
}
|
||||
|
||||
fn test_splitmix64_reproducibility() {
|
||||
t := time.ticks()
|
||||
println('t: $t')
|
||||
randoms1 := gen_randoms(t, 1000)
|
||||
randoms2 := gen_randoms(t, 1000)
|
||||
seed_data := rand.time_seed_array(2)
|
||||
randoms1 := gen_randoms(seed_data, 1000)
|
||||
randoms2 := gen_randoms(seed_data, 1000)
|
||||
assert randoms1.len == randoms2.len
|
||||
show_u64s( randoms1 )
|
||||
show_u64s( randoms2 )
|
||||
len := randoms1.len
|
||||
for i in 0 .. len {
|
||||
assert randoms1[i] == randoms2[i]
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: use the `in` syntax and remove this function
|
||||
// after generics has been completely implemented
|
||||
fn found(value u64, arr []u64) bool {
|
||||
for item in arr {
|
||||
if value == item {
|
||||
return true
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
fn test_splitmix64_variability() {
|
||||
// If this test fails and if it is certainly not the implementation
|
||||
// at fault, try changing the seed values. Repeated values are
|
||||
// improbable but not impossible.
|
||||
for seed in seeds {
|
||||
mut rng := rand.SplitMix64RNG{}
|
||||
rng.seed(seed)
|
||||
mut values := []u64{cap: value_count}
|
||||
for i in 0 .. value_count {
|
||||
value := rng.u64()
|
||||
assert !found(value, values)
|
||||
assert values.len == i
|
||||
values << value
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn check_uniformity_u64(rng rand.SplitMix64RNG, range u64) {
|
||||
range_f64 := f64(range)
|
||||
expected_mean := range_f64 / 2.0
|
||||
mut variance := 0.0
|
||||
for _ in 0 .. sample_size {
|
||||
diff := f64(rng.u64n(range)) - expected_mean
|
||||
variance += diff * diff
|
||||
}
|
||||
variance /= sample_size - 1
|
||||
sigma := math.sqrt(variance)
|
||||
expected_sigma := range_f64 * inv_sqrt_12
|
||||
error := (sigma - expected_sigma) / expected_sigma
|
||||
assert math.abs(error) < stats_epsilon
|
||||
}
|
||||
|
||||
fn test_splitmix64_uniformity_u64() {
|
||||
ranges := [14019545, 80240, 130]
|
||||
for seed in seeds {
|
||||
mut rng := rand.SplitMix64RNG{}
|
||||
rng.seed(seed)
|
||||
for range in ranges {
|
||||
check_uniformity_u64(rng, range)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn check_uniformity_f64(rng rand.SplitMix64RNG) {
|
||||
expected_mean := 0.5
|
||||
mut variance := 0.0
|
||||
for _ in 0 .. sample_size {
|
||||
diff := rng.f64() - expected_mean
|
||||
variance += diff * diff
|
||||
}
|
||||
variance /= sample_size - 1
|
||||
sigma := math.sqrt(variance)
|
||||
expected_sigma := inv_sqrt_12
|
||||
error := (sigma - expected_sigma) / expected_sigma
|
||||
assert math.abs(error) < stats_epsilon
|
||||
}
|
||||
|
||||
fn test_splitmix64_uniformity_f64() {
|
||||
// The f64 version
|
||||
for seed in seeds {
|
||||
mut rng := rand.SplitMix64RNG{}
|
||||
rng.seed(seed)
|
||||
check_uniformity_f64(rng)
|
||||
}
|
||||
}
|
||||
|
||||
fn test_splitmix64_u32n() {
|
||||
max := 16384
|
||||
for seed in seeds {
|
||||
mut rng := rand.SplitMix64RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.u32n(max)
|
||||
assert value >= 0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_splitmix64_u64n() {
|
||||
max := u64(379091181005)
|
||||
for seed in seeds {
|
||||
mut rng := rand.SplitMix64RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.u64n(max)
|
||||
assert value >= 0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_splitmix64_u32_in_range() {
|
||||
max := 484468466
|
||||
min := 316846
|
||||
for seed in seeds {
|
||||
mut rng := rand.SplitMix64RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.u32_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_splitmix64_u64_in_range() {
|
||||
max := u64(216468454685163)
|
||||
min := u64(6848646868)
|
||||
for seed in seeds {
|
||||
mut rng := rand.SplitMix64RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.u64_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_splitmix64_int31() {
|
||||
max_u31 := 0x7FFFFFFF
|
||||
sign_mask := 0x80000000
|
||||
for seed in seeds {
|
||||
mut rng := rand.SplitMix64RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.int31()
|
||||
assert value >= 0
|
||||
assert value <= max_u31
|
||||
// This statement ensures that the sign bit is zero
|
||||
assert (value & sign_mask) == 0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_splitmix64_int63() {
|
||||
max_u63 := i64(0x7FFFFFFFFFFFFFFF)
|
||||
sign_mask := i64(0x8000000000000000)
|
||||
for seed in seeds {
|
||||
mut rng := rand.SplitMix64RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.int63()
|
||||
assert value >= 0
|
||||
assert value <= max_u63
|
||||
assert (value & sign_mask) == 0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_splimix64_intn() {
|
||||
max := 2525642
|
||||
for seed in seeds {
|
||||
rng := rand.SplitMix64RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.intn(max)
|
||||
assert value >= 0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_splimix64_i64n() {
|
||||
max := i64(3246727724653636)
|
||||
for seed in seeds {
|
||||
rng := rand.SplitMix64RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.i64n(max)
|
||||
assert value >= 0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_splimix64_int_in_range() {
|
||||
min := -4252
|
||||
max := 230549862
|
||||
for seed in seeds {
|
||||
rng := rand.SplitMix64RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.int_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_splimix64_i64_in_range() {
|
||||
min := i64(-24095)
|
||||
max := i64(324058)
|
||||
for seed in seeds {
|
||||
rng := rand.SplitMix64RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.i64_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_splitmix64_f32() {
|
||||
for seed in seeds {
|
||||
mut rng := rand.SplitMix64RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f32()
|
||||
assert value >= 0.0
|
||||
assert value < 1.0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_splitmix64_f64() {
|
||||
for seed in seeds {
|
||||
mut rng := rand.SplitMix64RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f64()
|
||||
assert value >= 0.0
|
||||
assert value < 1.0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_splitmix64_f32n() {
|
||||
max := f32(357.0)
|
||||
for seed in seeds {
|
||||
mut rng := rand.SplitMix64RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f32()
|
||||
assert value >= 0.0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_splitmix64_f64n() {
|
||||
max := 1.52e6
|
||||
for seed in seeds {
|
||||
mut rng := rand.SplitMix64RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f64()
|
||||
assert value >= 0.0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_splitmix64_f32_in_range() {
|
||||
min := f32(-24.0)
|
||||
max := f32(125.0)
|
||||
for seed in seeds {
|
||||
mut rng := rand.SplitMix64RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f32()
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_splitmix64_f64_in_range() {
|
||||
min := -548.7
|
||||
max := 5015.2
|
||||
for seed in seeds {
|
||||
mut rng := rand.SplitMix64RNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f64()
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -0,0 +1,291 @@
|
|||
// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
|
||||
// Use of this source code is governed by an MIT license
|
||||
// that can be found in the LICENSE file.
|
||||
module rand
|
||||
|
||||
import math.bits
|
||||
|
||||
// Implementation note:
|
||||
// ====================
|
||||
// C.rand() is okay to use within its defined range of C.RAND_MAX.
|
||||
// (See: https://web.archive.org/web/20180801210127/http://eternallyconfuzzled.com/arts/jsw_art_rand.aspx)
|
||||
// The problem is, this value varies with the libc implementation. On windows,
|
||||
// for example, RAND_MAX is usually a measly 32767, whereas on (newer) linux it's generaly
|
||||
// 2147483647. The repetition period also varies wildly. In order to provide more entropy
|
||||
// without altering the underlying algorithm too much, this implementation simply
|
||||
// requests for more random bits until the necessary width for the integers is achieved.
|
||||
const (
|
||||
rand_limit = u64(C.RAND_MAX)
|
||||
rand_bitsize = bits.len_64(rand_limit)
|
||||
u32_iter_count = calculate_iterations_for(32)
|
||||
u64_iter_count = calculate_iterations_for(64)
|
||||
)
|
||||
|
||||
fn calculate_iterations_for(bits int) int {
|
||||
base := bits / rand_bitsize
|
||||
extra := if bits % rand_bitsize == 0 { 0 } else { 1 }
|
||||
return base + extra
|
||||
}
|
||||
|
||||
// Size constants to avoid importing the entire math module
|
||||
const (
|
||||
max_u32 = 0xFFFFFFFF
|
||||
max_u64 = 0xFFFFFFFFFFFFFFFF
|
||||
max_u32_as_f32 = f32(max_u32)
|
||||
max_u64_as_f64 = f64(max_u64)
|
||||
)
|
||||
|
||||
// Masks for fast modular division
|
||||
const (
|
||||
u31_mask = u32(0x7FFFFFFF)
|
||||
u63_mask = u64(0x7FFFFFFFFFFFFFFF)
|
||||
)
|
||||
|
||||
// C.rand returns a pseudorandom integer from 0 (inclusive) to C.RAND_MAX (exclusive)
|
||||
fn C.rand() int
|
||||
|
||||
// C.srand seeds the internal PRNG with the given int seed.
|
||||
// fn C.srand(seed int)
|
||||
// SysRNG is the PRNG provided by default in the libc implementiation that V uses.
|
||||
pub struct SysRNG {
|
||||
mut:
|
||||
seed u32 = time_seed_32()
|
||||
}
|
||||
|
||||
// r.seed() sets the seed of the accepting SysRNG to the given data.
|
||||
pub fn (mut r SysRNG) seed(seed_data []u32) {
|
||||
if seed_data.len != 1 {
|
||||
eprintln('SysRNG needs one 32-bit unsigned integer as the seed.')
|
||||
exit(1)
|
||||
}
|
||||
r.seed = seed_data[0]
|
||||
C.srand(int(r.seed))
|
||||
}
|
||||
|
||||
// r.default_rand() exposes the default behavior of the system's RNG
|
||||
// (equivalent to calling C.rand()). Recommended for testing/comparison
|
||||
// b/w V and other languages using libc and not for regular use.
|
||||
// This is also a one-off feature of SysRNG, similar to the global seed
|
||||
// situation. Other generators will not have this.
|
||||
[inline]
|
||||
pub fn (r SysRNG) default_rand() int {
|
||||
return C.rand()
|
||||
}
|
||||
|
||||
// r.u32() returns a pseudorandom u32 value less than 2^32
|
||||
[inline]
|
||||
pub fn (r SysRNG) u32() u32 {
|
||||
mut result := u32(C.rand())
|
||||
for i in 1 .. u32_iter_count {
|
||||
result = result ^ (u32(C.rand()) << (rand_bitsize * i))
|
||||
}
|
||||
return result
|
||||
}
|
||||
|
||||
// r.u64() returns a pseudorandom u64 value less than 2^64
|
||||
[inline]
|
||||
pub fn (r SysRNG) u64() u64 {
|
||||
mut result := u64(C.rand())
|
||||
for i in 1 .. u64_iter_count {
|
||||
result = result ^ (u64(C.rand()) << (rand_bitsize * i))
|
||||
}
|
||||
return result
|
||||
}
|
||||
|
||||
// r.u32n(max) returns a pseudorandom u32 value that is guaranteed to be less than max
|
||||
[inline]
|
||||
pub fn (r SysRNG) u32n(max u32) u32 {
|
||||
if max == 0 {
|
||||
eprintln('max must be positive integer')
|
||||
exit(1)
|
||||
}
|
||||
// Owing to the pigeon-hole principle, we can't simply do
|
||||
// val := rng.u32() % max.
|
||||
// It'll wreck the properties of the distribution unless
|
||||
// max evenly divides 2^32. So we divide evenly to
|
||||
// the closest power of two. Then we loop until we find
|
||||
// an int in the required range
|
||||
bit_len := bits.len_32(max)
|
||||
if bit_len == 32 {
|
||||
for {
|
||||
value := r.u32()
|
||||
if value < max {
|
||||
return value
|
||||
}
|
||||
}
|
||||
} else {
|
||||
mask := (u32(1) << (bit_len + 1)) - 1
|
||||
for {
|
||||
value := r.u32() & mask
|
||||
if value < max {
|
||||
return value
|
||||
}
|
||||
}
|
||||
}
|
||||
return u32(0)
|
||||
}
|
||||
|
||||
// r.u64n(max) returns a pseudorandom u64 value that is guaranteed to be less than max
|
||||
[inline]
|
||||
pub fn (r SysRNG) u64n(max u64) u64 {
|
||||
if max == 0 {
|
||||
eprintln('max must be positive integer')
|
||||
exit(1)
|
||||
}
|
||||
// Similar procedure for u64s
|
||||
bit_len := bits.len_64(max)
|
||||
if bit_len == 64 {
|
||||
for {
|
||||
value := r.u64()
|
||||
if value < max {
|
||||
return value
|
||||
}
|
||||
}
|
||||
} else {
|
||||
mask := (u64(1) << (bit_len + 1)) - 1
|
||||
for {
|
||||
value := r.u64() & mask
|
||||
if value < max {
|
||||
return value
|
||||
}
|
||||
}
|
||||
}
|
||||
return u64(0)
|
||||
}
|
||||
|
||||
// r.u32n(min, max) returns a pseudorandom u32 value that is guaranteed to be in [min, max)
|
||||
[inline]
|
||||
pub fn (r SysRNG) u32_in_range(min, max u32) u32 {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min')
|
||||
exit(1)
|
||||
}
|
||||
return min + r.u32n(max - min)
|
||||
}
|
||||
|
||||
// r.u64n(min, max) returns a pseudorandom u64 value that is guaranteed to be in [min, max)
|
||||
[inline]
|
||||
pub fn (r SysRNG) u64_in_range(min, max u64) u64 {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min')
|
||||
exit(1)
|
||||
}
|
||||
return min + r.u64n(max - min)
|
||||
}
|
||||
|
||||
// r.int() returns a pseudorandom 32-bit int (which may be negative)
|
||||
[inline]
|
||||
pub fn (r SysRNG) int() int {
|
||||
return int(r.u32())
|
||||
}
|
||||
|
||||
// r.i64() returns a pseudorandom 64-bit i64 (which may be negative)
|
||||
[inline]
|
||||
pub fn (r SysRNG) i64() i64 {
|
||||
return i64(r.u64())
|
||||
}
|
||||
|
||||
// r.int31() returns a pseudorandom 31-bit int which is non-negative
|
||||
[inline]
|
||||
pub fn (r SysRNG) int31() int {
|
||||
return int(r.u32() & u31_mask) // Set the 32nd bit to 0.
|
||||
}
|
||||
|
||||
// r.int63() returns a pseudorandom 63-bit int which is non-negative
|
||||
[inline]
|
||||
pub fn (r SysRNG) int63() i64 {
|
||||
return i64(r.u64() & u63_mask) // Set the 64th bit to 0.
|
||||
}
|
||||
|
||||
// r.intn(max) returns a pseudorandom int that lies in [0, max)
|
||||
[inline]
|
||||
pub fn (r SysRNG) intn(max int) int {
|
||||
if max <= 0 {
|
||||
eprintln('max has to be positive.')
|
||||
exit(1)
|
||||
}
|
||||
return int(r.u32n(max))
|
||||
}
|
||||
|
||||
// r.i64n(max) returns a pseudorandom i64 that lies in [0, max)
|
||||
[inline]
|
||||
pub fn (r SysRNG) i64n(max i64) i64 {
|
||||
if max <= 0 {
|
||||
eprintln('max has to be positive.')
|
||||
exit(1)
|
||||
}
|
||||
return i64(r.u64n(max))
|
||||
}
|
||||
|
||||
// r.int_in_range(min, max) returns a pseudorandom int that lies in [min, max)
|
||||
[inline]
|
||||
pub fn (r SysRNG) int_in_range(min, max int) int {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min')
|
||||
exit(1)
|
||||
}
|
||||
// This supports negative ranges like [-10, -5) because the difference is positive
|
||||
return min + r.intn(max - min)
|
||||
}
|
||||
|
||||
// r.i64_in_range(min, max) returns a pseudorandom i64 that lies in [min, max)
|
||||
[inline]
|
||||
pub fn (r SysRNG) i64_in_range(min, max i64) i64 {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min')
|
||||
exit(1)
|
||||
}
|
||||
return min + r.i64n(max - min)
|
||||
}
|
||||
|
||||
// r.f32() returns a pseudorandom f32 value between 0.0 (inclusive) and 1.0 (exclusive) i.e [0, 1)
|
||||
[inline]
|
||||
pub fn (r SysRNG) f32() f32 {
|
||||
return f32(r.u32()) / max_u32_as_f32
|
||||
}
|
||||
|
||||
// r.f64() returns a pseudorandom f64 value between 0.0 (inclusive) and 1.0 (exclusive) i.e [0, 1)
|
||||
[inline]
|
||||
pub fn (r SysRNG) f64() f64 {
|
||||
return f64(r.u64()) / max_u64_as_f64
|
||||
}
|
||||
|
||||
// r.f32n() returns a pseudorandom f32 value in [0, max)
|
||||
[inline]
|
||||
pub fn (r SysRNG) f32n(max f32) f32 {
|
||||
if max <= 0 {
|
||||
eprintln('max has to be positive.')
|
||||
exit(1)
|
||||
}
|
||||
return r.f32() * max
|
||||
}
|
||||
|
||||
// r.f64n() returns a pseudorandom f64 value in [0, max)
|
||||
[inline]
|
||||
pub fn (r SysRNG) f64n(max f64) f64 {
|
||||
if max <= 0 {
|
||||
eprintln('max has to be positive.')
|
||||
exit(1)
|
||||
}
|
||||
return r.f64() * max
|
||||
}
|
||||
|
||||
// r.f32_in_range(min, max) returns a pseudorandom f32 that lies in [min, max)
|
||||
[inline]
|
||||
pub fn (r SysRNG) f32_in_range(min, max f32) f32 {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min')
|
||||
exit(1)
|
||||
}
|
||||
return min + r.f32n(max - min)
|
||||
}
|
||||
|
||||
// r.i64_in_range(min, max) returns a pseudorandom i64 that lies in [min, max)
|
||||
[inline]
|
||||
pub fn (r SysRNG) f64_in_range(min, max f64) f64 {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min')
|
||||
exit(1)
|
||||
}
|
||||
return min + r.f64n(max - min)
|
||||
}
|
|
@ -0,0 +1,15 @@
|
|||
// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
|
||||
// Use of this source code is governed by an MIT license
|
||||
// that can be found in the LICENSE file.
|
||||
module rand
|
||||
|
||||
// Until there's a portable, JS has a seeded way to produce random numbers
|
||||
// and not just Math.random(), use any of the existing implementations
|
||||
// as the System's RNG
|
||||
type SysRNG WyRandRNG
|
||||
|
||||
// In the JS version, we simply return the same int as is normally generated.
|
||||
[inline]
|
||||
pub fn (r SysRNG) default_rand() int {
|
||||
return r.int()
|
||||
}
|
|
@ -0,0 +1,354 @@
|
|||
import rand
|
||||
import math
|
||||
|
||||
const (
|
||||
range_limit = 40
|
||||
value_count = 1000
|
||||
seeds = [u32(42), 256]
|
||||
)
|
||||
|
||||
const (
|
||||
sample_size = 1000
|
||||
stats_epsilon = 0.05
|
||||
inv_sqrt_12 = 1.0 / math.sqrt(12)
|
||||
)
|
||||
|
||||
fn get_n_randoms(n int, r rand.SysRNG) []int {
|
||||
mut ints := []int{cap: n}
|
||||
for _ in 0 .. n {
|
||||
ints << r.int()
|
||||
}
|
||||
return ints
|
||||
}
|
||||
|
||||
fn test_sys_rng_reproducibility() {
|
||||
// Note that C.srand() sets the seed globally.
|
||||
// So the order of seeding matters. It is recommended
|
||||
// to obtain all necessary data first, then set the
|
||||
// seed for another batch of data.
|
||||
for seed in seeds {
|
||||
seed_data := [seed]
|
||||
r1 := rand.SysRNG{}
|
||||
r2 := rand.SysRNG{}
|
||||
r1.seed(seed_data)
|
||||
ints1 := get_n_randoms(value_count, r1)
|
||||
r2.seed(seed_data)
|
||||
ints2 := get_n_randoms(value_count, r2)
|
||||
assert ints1 == ints2
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: use the `in` syntax and remove this function
|
||||
// after generics has been completely implemented
|
||||
fn found(value u64, arr []u64) bool {
|
||||
for item in arr {
|
||||
if value == item {
|
||||
return true
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
fn test_sys_rng_variability() {
|
||||
// If this test fails and if it is certainly not the implementation
|
||||
// at fault, try changing the seed values. Repeated values are
|
||||
// improbable but not impossible.
|
||||
for seed in seeds {
|
||||
seed_data := [seed]
|
||||
rng := rand.SysRNG{}
|
||||
rng.seed(seed_data)
|
||||
mut values := []u64{cap: value_count}
|
||||
for i in 0 .. value_count {
|
||||
value := rng.u64()
|
||||
assert !found(value, values)
|
||||
assert values.len == i
|
||||
values << value
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn check_uniformity_u64(rng rand.SysRNG, range u64) {
|
||||
range_f64 := f64(range)
|
||||
expected_mean := range_f64 / 2.0
|
||||
mut variance := 0.0
|
||||
for _ in 0 .. sample_size {
|
||||
diff := f64(rng.u64n(range)) - expected_mean
|
||||
variance += diff * diff
|
||||
}
|
||||
variance /= sample_size - 1
|
||||
sigma := math.sqrt(variance)
|
||||
expected_sigma := range_f64 * inv_sqrt_12
|
||||
error := (sigma - expected_sigma) / expected_sigma
|
||||
assert math.abs(error) < stats_epsilon
|
||||
}
|
||||
|
||||
fn test_sys_rng_uniformity_u64() {
|
||||
// This assumes that C.rand() produces uniform results to begin with.
|
||||
// If the failure persists, report an issue on GitHub
|
||||
ranges := [14019545, 80240, 130]
|
||||
for seed in seeds {
|
||||
seed_data := [seed]
|
||||
rng := rand.SysRNG{}
|
||||
rng.seed(seed_data)
|
||||
for range in ranges {
|
||||
check_uniformity_u64(rng, range)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn check_uniformity_f64(rng rand.SysRNG) {
|
||||
expected_mean := 0.5
|
||||
mut variance := 0.0
|
||||
for _ in 0 .. sample_size {
|
||||
diff := rng.f64() - expected_mean
|
||||
variance += diff * diff
|
||||
}
|
||||
variance /= sample_size - 1
|
||||
sigma := math.sqrt(variance)
|
||||
expected_sigma := inv_sqrt_12
|
||||
error := (sigma - expected_sigma) / expected_sigma
|
||||
assert math.abs(error) < stats_epsilon
|
||||
}
|
||||
|
||||
fn test_sys_rng_uniformity_f64() {
|
||||
// The f64 version
|
||||
for seed in seeds {
|
||||
seed_data := [seed]
|
||||
rng := rand.SysRNG{}
|
||||
rng.seed(seed_data)
|
||||
check_uniformity_f64(rng)
|
||||
}
|
||||
}
|
||||
|
||||
fn test_sys_rng_u32n() {
|
||||
max := 16384
|
||||
for seed in seeds {
|
||||
seed_data := [seed]
|
||||
rng := rand.SysRNG{}
|
||||
rng.seed(seed_data)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.u32n(max)
|
||||
assert value >= 0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_sys_rng_u64n() {
|
||||
max := u64(379091181005)
|
||||
for seed in seeds {
|
||||
seed_data := [seed]
|
||||
rng := rand.SysRNG{}
|
||||
rng.seed(seed_data)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.u64n(max)
|
||||
assert value >= 0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_sys_rng_u32_in_range() {
|
||||
max := 484468466
|
||||
min := 316846
|
||||
for seed in seeds {
|
||||
seed_data := [seed]
|
||||
rng := rand.SysRNG{}
|
||||
rng.seed(seed_data)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.u32_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_sys_rng_u64_in_range() {
|
||||
max := u64(216468454685163)
|
||||
min := u64(6848646868)
|
||||
for seed in seeds {
|
||||
seed_data := [seed]
|
||||
rng := rand.SysRNG{}
|
||||
rng.seed(seed_data)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.u64_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_sys_rng_intn() {
|
||||
max := 2525642
|
||||
for seed in seeds {
|
||||
seed_data := [seed]
|
||||
rng := rand.SysRNG{}
|
||||
rng.seed(seed_data)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.intn(max)
|
||||
assert value >= 0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_sys_rng_i64n() {
|
||||
max := i64(3246727724653636)
|
||||
for seed in seeds {
|
||||
seed_data := [seed]
|
||||
rng := rand.SysRNG{}
|
||||
rng.seed(seed_data)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.i64n(max)
|
||||
assert value >= 0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_sys_rng_int_in_range() {
|
||||
min := -4252
|
||||
max := 23054962
|
||||
for seed in seeds {
|
||||
seed_data := [seed]
|
||||
rng := rand.SysRNG{}
|
||||
rng.seed(seed_data)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.int_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_sys_rng_i64_in_range() {
|
||||
min := i64(-24095)
|
||||
max := i64(324058)
|
||||
for seed in seeds {
|
||||
seed_data := [seed]
|
||||
rng := rand.SysRNG{}
|
||||
rng.seed(seed_data)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.i64_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_sys_rng_int31() {
|
||||
max_u31 := 0x7FFFFFFF
|
||||
sign_mask := 0x80000000
|
||||
for seed in seeds {
|
||||
seed_data := [seed]
|
||||
rng := rand.SysRNG{}
|
||||
rng.seed(seed_data)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.int31()
|
||||
assert value >= 0
|
||||
assert value <= max_u31
|
||||
// This statement ensures that the sign bit is zero
|
||||
assert (value & sign_mask) == 0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_sys_rng_int63() {
|
||||
max_u63 := i64(0x7FFFFFFFFFFFFFFF)
|
||||
sign_mask := i64(0x8000000000000000)
|
||||
for seed in seeds {
|
||||
seed_data := [seed]
|
||||
rng := rand.SysRNG{}
|
||||
rng.seed(seed_data)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.int63()
|
||||
assert value >= 0
|
||||
assert value <= max_u63
|
||||
assert (value & sign_mask) == 0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_sys_rng_f32() {
|
||||
for seed in seeds {
|
||||
seed_data := [seed]
|
||||
rng := rand.SysRNG{}
|
||||
rng.seed(seed_data)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f32()
|
||||
assert value >= 0.0
|
||||
assert value < 1.0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_sys_rng_f64() {
|
||||
for seed in seeds {
|
||||
seed_data := [seed]
|
||||
rng := rand.SysRNG{}
|
||||
rng.seed(seed_data)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f64()
|
||||
assert value >= 0.0
|
||||
assert value < 1.0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_sys_rng_f32n() {
|
||||
max := f32(357.0)
|
||||
for seed in seeds {
|
||||
seed_data := [seed]
|
||||
rng := rand.SysRNG{}
|
||||
rng.seed(seed_data)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f32()
|
||||
assert value >= 0.0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_sys_rng_f64n() {
|
||||
max := 1.52e6
|
||||
for seed in seeds {
|
||||
seed_data := [seed]
|
||||
rng := rand.SysRNG{}
|
||||
rng.seed(seed_data)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f64()
|
||||
assert value >= 0.0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_sys_rng_f32_in_range() {
|
||||
min := f32(-24.0)
|
||||
max := f32(125.0)
|
||||
for seed in seeds {
|
||||
seed_data := [seed]
|
||||
rng := rand.SysRNG{}
|
||||
rng.seed(seed_data)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f32()
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_sys_rng_f64_in_range() {
|
||||
min := -548.7
|
||||
max := 5015.2
|
||||
for seed in seeds {
|
||||
seed_data := [seed]
|
||||
rng := rand.SysRNG{}
|
||||
rng.seed(seed_data)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f64()
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,42 @@
|
|||
// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
|
||||
// Use of this source code is governed by an MIT license
|
||||
// that can be found in the LICENSE file.
|
||||
module rand
|
||||
|
||||
import time
|
||||
|
||||
// Commonly used constants across RNGs
|
||||
const (
|
||||
lower_mask = u64(0x00000000ffffffff)
|
||||
)
|
||||
|
||||
// Constants taken from Numerical Recipes
|
||||
[inline]
|
||||
fn nr_next(prev u32) u32 {
|
||||
return prev * 1664525 + 1013904223
|
||||
}
|
||||
|
||||
// utility function that return the required number of u32s generated from system time
|
||||
[inline]
|
||||
pub fn time_seed_array(count int) []u32 {
|
||||
mut seed := u32(time.now().unix_time())
|
||||
mut seed_data := []u32{cap: count}
|
||||
for _ in 0 .. count {
|
||||
seed = nr_next(seed)
|
||||
seed_data << nr_next(seed)
|
||||
}
|
||||
return seed_data
|
||||
}
|
||||
|
||||
[inline]
|
||||
fn time_seed_32() u32 {
|
||||
return time_seed_array(1)[0]
|
||||
}
|
||||
|
||||
[inline]
|
||||
fn time_seed_64() u64 {
|
||||
seed_data := time_seed_array(2)
|
||||
lower := u64(seed_data[0])
|
||||
upper := u64(seed_data[1])
|
||||
return lower | (upper << 32)
|
||||
}
|
|
@ -0,0 +1,251 @@
|
|||
// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
|
||||
// Use of this source code is governed by an MIT license
|
||||
// that can be found in the LICENSE file.
|
||||
module rand
|
||||
|
||||
import math.bits
|
||||
import hash.wyhash
|
||||
|
||||
// Redefinition of some constants that we will need for pseudorandom number generation
|
||||
const (
|
||||
wyp0 = u64(0xa0761d6478bd642f)
|
||||
wyp1 = u64(0xe7037ed1a0b428db)
|
||||
)
|
||||
|
||||
// RNG based on the WyHash hashing algorithm
|
||||
pub struct WyRandRNG {
|
||||
mut:
|
||||
state u64 = time_seed_64()
|
||||
has_extra bool = false
|
||||
extra u32
|
||||
}
|
||||
|
||||
// seed() - Set the seed, needs only two u32s in little endian format as [lower, higher]
|
||||
pub fn (mut rng WyRandRNG) seed(seed_data []u32) {
|
||||
if seed_data.len != 2 {
|
||||
eprintln('WyRandRNG needs 2 32-bit unsigned integers as the seed.')
|
||||
exit(1)
|
||||
}
|
||||
rng.state = seed_data[0] | (u64(seed_data[1]) << 32)
|
||||
rng.has_extra = false
|
||||
}
|
||||
|
||||
|
||||
// rng.u32() updates the PRNG state and returns the next pseudorandom u32
|
||||
[inline]
|
||||
pub fn (mut rng WyRandRNG) u32() u32 {
|
||||
if rng.has_extra {
|
||||
rng.has_extra = false
|
||||
return rng.extra
|
||||
}
|
||||
full_value := rng.u64()
|
||||
lower := u32(full_value & lower_mask)
|
||||
upper := u32(full_value >> 32)
|
||||
rng.extra = upper
|
||||
rng.has_extra = true
|
||||
return lower
|
||||
}
|
||||
|
||||
// rng.u64() updates the PRNG state and returns the next pseudorandom u64
|
||||
[inline]
|
||||
pub fn (mut rng WyRandRNG) u64() u64 {
|
||||
unsafe {
|
||||
mut seed1 := rng.state
|
||||
seed1 += wyp0
|
||||
rng.state = seed1
|
||||
return wyhash.wymum(seed1 ^ wyp1, seed1)
|
||||
}
|
||||
return 0
|
||||
}
|
||||
|
||||
// rng.u32n(max) returns a pseudorandom u32 less than the max
|
||||
[inline]
|
||||
pub fn (mut rng WyRandRNG) u32n(max u32) u32 {
|
||||
if max == 0 {
|
||||
eprintln('max must be positive integer')
|
||||
exit(1)
|
||||
}
|
||||
// Check SysRNG in system_rng.c.v for explanation
|
||||
bit_len := bits.len_32(max)
|
||||
if bit_len == 32 {
|
||||
for {
|
||||
value := rng.u32()
|
||||
if value < max {
|
||||
return value
|
||||
}
|
||||
}
|
||||
} else {
|
||||
mask := (u32(1) << (bit_len + 1)) - 1
|
||||
for {
|
||||
value := rng.u32() & mask
|
||||
if value < max {
|
||||
return value
|
||||
}
|
||||
}
|
||||
}
|
||||
return u32(0)
|
||||
}
|
||||
|
||||
// rng.u64n(max) returns a pseudorandom u64 less than the max
|
||||
[inline]
|
||||
pub fn (mut rng WyRandRNG) u64n(max u64) u64 {
|
||||
if max == 0 {
|
||||
eprintln('max must be positive integer')
|
||||
exit(1)
|
||||
}
|
||||
bit_len := bits.len_64(max)
|
||||
if bit_len == 64 {
|
||||
for {
|
||||
value := rng.u64()
|
||||
if value < max {
|
||||
return value
|
||||
}
|
||||
}
|
||||
} else {
|
||||
mask := (u64(1) << (bit_len + 1)) - 1
|
||||
for {
|
||||
value := rng.u64() & mask
|
||||
if value < max {
|
||||
return value
|
||||
}
|
||||
}
|
||||
}
|
||||
return u64(0)
|
||||
}
|
||||
|
||||
// rng.u32n(min, max) returns a pseudorandom u32 value that is guaranteed to be in [min, max)
|
||||
[inline]
|
||||
pub fn (mut rng WyRandRNG) u32_in_range(min, max u32) u32 {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min')
|
||||
exit(1)
|
||||
}
|
||||
return min + rng.u32n(max - min)
|
||||
}
|
||||
|
||||
// rng.u64n(min, max) returns a pseudorandom u64 value that is guaranteed to be in [min, max)
|
||||
[inline]
|
||||
pub fn (mut rng WyRandRNG) u64_in_range(min, max u64) u64 {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min')
|
||||
exit(1)
|
||||
}
|
||||
return min + rng.u64n(max - min)
|
||||
}
|
||||
|
||||
// rng.int() returns a pseudorandom 32-bit int (which may be negative)
|
||||
[inline]
|
||||
pub fn (mut rng WyRandRNG) int() int {
|
||||
return int(rng.u32())
|
||||
}
|
||||
|
||||
// rng.i64() returns a pseudorandom 64-bit i64 (which may be negative)
|
||||
[inline]
|
||||
pub fn (mut rng WyRandRNG) i64() i64 {
|
||||
return i64(rng.u64())
|
||||
}
|
||||
|
||||
// rng.int31() returns a pseudorandom 31-bit int which is non-negative
|
||||
[inline]
|
||||
pub fn (mut rng WyRandRNG) int31() int {
|
||||
return int(rng.u32() & u31_mask) // Set the 32nd bit to 0.
|
||||
}
|
||||
|
||||
// rng.int63() returns a pseudorandom 63-bit int which is non-negative
|
||||
[inline]
|
||||
pub fn (mut rng WyRandRNG) int63() i64 {
|
||||
return i64(rng.u64() & u63_mask) // Set the 64th bit to 0.
|
||||
}
|
||||
|
||||
// rng.intn(max) returns a pseudorandom int that lies in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng WyRandRNG) intn(max int) int {
|
||||
if max <= 0 {
|
||||
eprintln('max has to be positive.')
|
||||
exit(1)
|
||||
}
|
||||
return int(rng.u32n(max))
|
||||
}
|
||||
|
||||
// rng.i64n(max) returns a pseudorandom int that lies in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng WyRandRNG) i64n(max i64) i64 {
|
||||
if max <= 0 {
|
||||
eprintln('max has to be positive.')
|
||||
exit(1)
|
||||
}
|
||||
return i64(rng.u64n(max))
|
||||
}
|
||||
|
||||
// rng.int_in_range(min, max) returns a pseudorandom int that lies in [min, max)
|
||||
[inline]
|
||||
pub fn (mut rng WyRandRNG) int_in_range(min, max int) int {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min')
|
||||
exit(1)
|
||||
}
|
||||
// This supports negative ranges like [-10, -5) because the difference is positive
|
||||
return min + rng.intn(max - min)
|
||||
}
|
||||
|
||||
// rng.i64_in_range(min, max) returns a pseudorandom i64 that lies in [min, max)
|
||||
[inline]
|
||||
pub fn (mut rng WyRandRNG) i64_in_range(min, max i64) i64 {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min')
|
||||
exit(1)
|
||||
}
|
||||
return min + rng.i64n(max - min)
|
||||
}
|
||||
|
||||
// rng.f32() returns a pseudorandom f32 value between 0.0 (inclusive) and 1.0 (exclusive) i.e [0, 1)
|
||||
[inline]
|
||||
pub fn (mut rng WyRandRNG) f32() f32 {
|
||||
return f32(rng.u32()) / max_u32_as_f32
|
||||
}
|
||||
|
||||
// rng.f64() returns a pseudorandom f64 value between 0.0 (inclusive) and 1.0 (exclusive) i.e [0, 1)
|
||||
[inline]
|
||||
pub fn (mut rng WyRandRNG) f64() f64 {
|
||||
return f64(rng.u64()) / max_u64_as_f64
|
||||
}
|
||||
|
||||
// rng.f32n() returns a pseudorandom f32 value in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng WyRandRNG) f32n(max f32) f32 {
|
||||
if max <= 0 {
|
||||
eprintln('max has to be positive.')
|
||||
exit(1)
|
||||
}
|
||||
return rng.f32() * max
|
||||
}
|
||||
|
||||
// rng.f64n() returns a pseudorandom f64 value in [0, max)
|
||||
[inline]
|
||||
pub fn (mut rng WyRandRNG) f64n(max f64) f64 {
|
||||
if max <= 0 {
|
||||
eprintln('max has to be positive.')
|
||||
exit(1)
|
||||
}
|
||||
return rng.f64() * max
|
||||
}
|
||||
|
||||
// rng.f32_in_range(min, max) returns a pseudorandom f32 that lies in [min, max)
|
||||
[inline]
|
||||
pub fn (mut rng WyRandRNG) f32_in_range(min, max f32) f32 {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min')
|
||||
exit(1)
|
||||
}
|
||||
return min + rng.f32n(max - min)
|
||||
}
|
||||
|
||||
// rng.i64_in_range(min, max) returns a pseudorandom i64 that lies in [min, max)
|
||||
[inline]
|
||||
pub fn (mut rng WyRandRNG) f64_in_range(min, max f64) f64 {
|
||||
if max <= min {
|
||||
eprintln('max must be greater than min')
|
||||
exit(1)
|
||||
}
|
||||
return min + rng.f64n(max - min)
|
||||
}
|
|
@ -0,0 +1,330 @@
|
|||
import rand
|
||||
import math
|
||||
|
||||
const (
|
||||
range_limit = 40
|
||||
value_count = 1000
|
||||
seeds = [[u32(42), 0], [u32(256), 0]]
|
||||
)
|
||||
|
||||
const (
|
||||
sample_size = 1000
|
||||
stats_epsilon = 0.05
|
||||
inv_sqrt_12 = 1.0 / math.sqrt(12)
|
||||
)
|
||||
|
||||
fn gen_randoms(seed_data []u32, bound int) []u64 {
|
||||
bound_u64 := u64(bound)
|
||||
mut randoms := [u64(0)].repeat(20)
|
||||
mut rnd := rand.WyRandRNG{}
|
||||
rnd.seed(seed_data)
|
||||
for i in 0 .. 20 {
|
||||
randoms[i] = rnd.u64n(bound_u64)
|
||||
}
|
||||
return randoms
|
||||
}
|
||||
|
||||
fn test_wyrand_reproducibility() {
|
||||
seed_data := rand.time_seed_array(2)
|
||||
randoms1 := gen_randoms(seed_data, 1000)
|
||||
randoms2 := gen_randoms(seed_data, 1000)
|
||||
assert randoms1.len == randoms2.len
|
||||
len := randoms1.len
|
||||
for i in 0 .. len {
|
||||
assert randoms1[i] == randoms2[i]
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: use the `in` syntax and remove this function
|
||||
// after generics has been completely implemented
|
||||
fn found(value u64, arr []u64) bool {
|
||||
for item in arr {
|
||||
if value == item {
|
||||
return true
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
fn test_wyrand_variability() {
|
||||
// If this test fails and if it is certainly not the implementation
|
||||
// at fault, try changing the seed values. Repeated values are
|
||||
// improbable but not impossible.
|
||||
for seed in seeds {
|
||||
mut rng := rand.WyRandRNG{}
|
||||
rng.seed(seed)
|
||||
mut values := []u64{cap: value_count}
|
||||
for i in 0 .. value_count {
|
||||
value := rng.u64()
|
||||
assert !found(value, values)
|
||||
assert values.len == i
|
||||
values << value
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn check_uniformity_u64(rng rand.WyRandRNG, range u64) {
|
||||
range_f64 := f64(range)
|
||||
expected_mean := range_f64 / 2.0
|
||||
mut variance := 0.0
|
||||
for _ in 0 .. sample_size {
|
||||
diff := f64(rng.u64n(range)) - expected_mean
|
||||
variance += diff * diff
|
||||
}
|
||||
variance /= sample_size - 1
|
||||
sigma := math.sqrt(variance)
|
||||
expected_sigma := range_f64 * inv_sqrt_12
|
||||
error := (sigma - expected_sigma) / expected_sigma
|
||||
assert math.abs(error) < stats_epsilon
|
||||
}
|
||||
|
||||
fn test_wyrand_uniformity_u64() {
|
||||
ranges := [14019545, 80240, 130]
|
||||
for seed in seeds {
|
||||
mut rng := rand.WyRandRNG{}
|
||||
rng.seed(seed)
|
||||
for range in ranges {
|
||||
check_uniformity_u64(rng, range)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn check_uniformity_f64(rng rand.WyRandRNG) {
|
||||
expected_mean := 0.5
|
||||
mut variance := 0.0
|
||||
for _ in 0 .. sample_size {
|
||||
diff := rng.f64() - expected_mean
|
||||
variance += diff * diff
|
||||
}
|
||||
variance /= sample_size - 1
|
||||
sigma := math.sqrt(variance)
|
||||
expected_sigma := inv_sqrt_12
|
||||
error := (sigma - expected_sigma) / expected_sigma
|
||||
assert math.abs(error) < stats_epsilon
|
||||
}
|
||||
|
||||
fn test_wyrand_uniformity_f64() {
|
||||
// The f64 version
|
||||
for seed in seeds {
|
||||
mut rng := rand.WyRandRNG{}
|
||||
rng.seed(seed)
|
||||
check_uniformity_f64(rng)
|
||||
}
|
||||
}
|
||||
|
||||
fn test_wyrand_u32n() {
|
||||
max := 16384
|
||||
for seed in seeds {
|
||||
mut rng := rand.WyRandRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.u32n(max)
|
||||
assert value >= 0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_wyrand_u64n() {
|
||||
max := u64(379091181005)
|
||||
for seed in seeds {
|
||||
mut rng := rand.WyRandRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.u64n(max)
|
||||
assert value >= 0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_wyrand_u32_in_range() {
|
||||
max := 484468466
|
||||
min := 316846
|
||||
for seed in seeds {
|
||||
mut rng := rand.WyRandRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.u32_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_wyrand_u64_in_range() {
|
||||
max := u64(216468454685163)
|
||||
min := u64(6848646868)
|
||||
for seed in seeds {
|
||||
mut rng := rand.WyRandRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.u64_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_wyrand_int31() {
|
||||
max_u31 := 0x7FFFFFFF
|
||||
sign_mask := 0x80000000
|
||||
for seed in seeds {
|
||||
mut rng := rand.WyRandRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.int31()
|
||||
assert value >= 0
|
||||
assert value <= max_u31
|
||||
// This statement ensures that the sign bit is zero
|
||||
assert (value & sign_mask) == 0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_wyrand_int63() {
|
||||
max_u63 := i64(0x7FFFFFFFFFFFFFFF)
|
||||
sign_mask := i64(0x8000000000000000)
|
||||
for seed in seeds {
|
||||
mut rng := rand.WyRandRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.int63()
|
||||
assert value >= 0
|
||||
assert value <= max_u63
|
||||
assert (value & sign_mask) == 0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_wyrand_intn() {
|
||||
max := 2525642
|
||||
for seed in seeds {
|
||||
rng := rand.WyRandRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.intn(max)
|
||||
assert value >= 0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_wyrand_i64n() {
|
||||
max := i64(3246727724653636)
|
||||
for seed in seeds {
|
||||
rng := rand.WyRandRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.i64n(max)
|
||||
assert value >= 0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_wyrand_int_in_range() {
|
||||
min := -4252
|
||||
max := 1034
|
||||
for seed in seeds {
|
||||
rng := rand.WyRandRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.int_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_wyrand_i64_in_range() {
|
||||
min := i64(-24095)
|
||||
max := i64(324058)
|
||||
for seed in seeds {
|
||||
rng := rand.WyRandRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.i64_in_range(min, max)
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_wyrand_f32() {
|
||||
for seed in seeds {
|
||||
mut rng := rand.WyRandRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f32()
|
||||
assert value >= 0.0
|
||||
assert value < 1.0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_wyrand_f64() {
|
||||
for seed in seeds {
|
||||
mut rng := rand.WyRandRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f64()
|
||||
assert value >= 0.0
|
||||
assert value < 1.0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_wyrand_f32n() {
|
||||
max := f32(357.0)
|
||||
for seed in seeds {
|
||||
mut rng := rand.WyRandRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f32()
|
||||
assert value >= 0.0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_wyrand_f64n() {
|
||||
max := 1.52e6
|
||||
for seed in seeds {
|
||||
mut rng := rand.WyRandRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f64()
|
||||
assert value >= 0.0
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_wyrand_f32_in_range() {
|
||||
min := f32(-24.0)
|
||||
max := f32(125.0)
|
||||
for seed in seeds {
|
||||
mut rng := rand.WyRandRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f32()
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_wyrand_f64_in_range() {
|
||||
min := -548.7
|
||||
max := 5015.2
|
||||
for seed in seeds {
|
||||
mut rng := rand.WyRandRNG{}
|
||||
rng.seed(seed)
|
||||
for _ in 0 .. range_limit {
|
||||
value := rng.f64()
|
||||
assert value >= min
|
||||
assert value < max
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue