strconv,js: f64_to_str works on JS backend now; Fix BigInt usage in infix expressions (#12464)

pull/12473/head
playX 2021-11-15 15:13:44 +03:00 committed by GitHub
parent 1d2b16dde2
commit a8a1e9381f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 399 additions and 66 deletions

View File

@ -0,0 +1 @@
module strconv

View File

@ -20,42 +20,6 @@ https://github.com/cespare/ryu/tree/ba56a33f39e3bbbfa409095d0f9ae168a595feea
=============================================================================*/ =============================================================================*/
// pow of ten table used by n_digit reduction
const (
ten_pow_table_64 = [
u64(1),
u64(10),
u64(100),
u64(1000),
u64(10000),
u64(100000),
u64(1000000),
u64(10000000),
u64(100000000),
u64(1000000000),
u64(10000000000),
u64(100000000000),
u64(1000000000000),
u64(10000000000000),
u64(100000000000000),
u64(1000000000000000),
u64(10000000000000000),
u64(100000000000000000),
u64(1000000000000000000),
u64(10000000000000000000),
]
)
//=============================================================================
// Conversion Functions
//=============================================================================
const (
mantbits64 = u32(52)
expbits64 = u32(11)
bias64 = 1023 // f64 exponent bias
maxexp64 = 2047
)
[direct_array_access] [direct_array_access]
fn (d Dec64) get_string_64(neg bool, i_n_digit int, i_pad_digit int) string { fn (d Dec64) get_string_64(neg bool, i_n_digit int, i_pad_digit int) string {
mut n_digit := i_n_digit + 1 mut n_digit := i_n_digit + 1
@ -87,10 +51,10 @@ fn (d Dec64) get_string_64(neg bool, i_n_digit int, i_pad_digit int) string {
// rounding last used digit // rounding last used digit
if n_digit < out_len { if n_digit < out_len {
// println("out:[$out]") // println("out:[$out]")
out += strconv.ten_pow_table_64[out_len - n_digit - 1] * 5 // round to up out += ten_pow_table_64[out_len - n_digit - 1] * 5 // round to up
out /= strconv.ten_pow_table_64[out_len - n_digit] out /= ten_pow_table_64[out_len - n_digit]
// println("out1:[$out] ${d.m / ten_pow_table_64[out_len - n_digit ]}") // println("out1:[$out] ${d.m / ten_pow_table_64[out_len - n_digit ]}")
if d.m / strconv.ten_pow_table_64[out_len - n_digit] < out { if d.m / ten_pow_table_64[out_len - n_digit] < out {
d_exp++ d_exp++
n_digit++ n_digit++
} }
@ -170,11 +134,11 @@ fn (d Dec64) get_string_64(neg bool, i_n_digit int, i_pad_digit int) string {
fn f64_to_decimal_exact_int(i_mant u64, exp u64) (Dec64, bool) { fn f64_to_decimal_exact_int(i_mant u64, exp u64) (Dec64, bool) {
mut d := Dec64{} mut d := Dec64{}
e := exp - strconv.bias64 e := exp - bias64
if e > strconv.mantbits64 { if e > mantbits64 {
return d, false return d, false
} }
shift := strconv.mantbits64 - e shift := mantbits64 - e
mant := i_mant | u64(0x0010_0000_0000_0000) // implicit 1 mant := i_mant | u64(0x0010_0000_0000_0000) // implicit 1
// mant := i_mant | (1 << mantbits64) // implicit 1 // mant := i_mant | (1 << mantbits64) // implicit 1
d.m = mant >> shift d.m = mant >> shift
@ -195,11 +159,11 @@ fn f64_to_decimal(mant u64, exp u64) Dec64 {
if exp == 0 { if exp == 0 {
// We subtract 2 so that the bounds computation has // We subtract 2 so that the bounds computation has
// 2 additional bits. // 2 additional bits.
e2 = 1 - strconv.bias64 - int(strconv.mantbits64) - 2 e2 = 1 - bias64 - int(mantbits64) - 2
m2 = mant m2 = mant
} else { } else {
e2 = int(exp) - strconv.bias64 - int(strconv.mantbits64) - 2 e2 = int(exp) - bias64 - int(mantbits64) - 2
m2 = (u64(1) << strconv.mantbits64) | mant m2 = (u64(1) << mantbits64) | mant
} }
even := (m2 & 1) == 0 even := (m2 & 1) == 0
accept_bounds := even accept_bounds := even
@ -373,13 +337,13 @@ pub fn f64_to_str(f f64, n_digit int) string {
u1.f = f u1.f = f
u := unsafe { u1.u } u := unsafe { u1.u }
neg := (u >> (strconv.mantbits64 + strconv.expbits64)) != 0 neg := (u >> (mantbits64 + expbits64)) != 0
mant := u & ((u64(1) << strconv.mantbits64) - u64(1)) mant := u & ((u64(1) << mantbits64) - u64(1))
exp := (u >> strconv.mantbits64) & ((u64(1) << strconv.expbits64) - u64(1)) exp := (u >> mantbits64) & ((u64(1) << expbits64) - u64(1))
// println("s:${neg} mant:${mant} exp:${exp} float:${f} byte:${u1.u:016lx}") // println("s:${neg} mant:${mant} exp:${exp} float:${f} byte:${u1.u:016lx}")
// Exit early for easy cases. // Exit early for easy cases.
if (exp == strconv.maxexp64) || (exp == 0 && mant == 0) { if (exp == maxexp64) || (exp == 0 && mant == 0) {
return get_string_special(neg, exp == 0, mant == 0) return get_string_special(neg, exp == 0, mant == 0)
} }
@ -398,13 +362,13 @@ pub fn f64_to_str_pad(f f64, n_digit int) string {
u1.f = f u1.f = f
u := unsafe { u1.u } u := unsafe { u1.u }
neg := (u >> (strconv.mantbits64 + strconv.expbits64)) != 0 neg := (u >> (mantbits64 + expbits64)) != 0
mant := u & ((u64(1) << strconv.mantbits64) - u64(1)) mant := u & ((u64(1) << mantbits64) - u64(1))
exp := (u >> strconv.mantbits64) & ((u64(1) << strconv.expbits64) - u64(1)) exp := (u >> mantbits64) & ((u64(1) << expbits64) - u64(1))
// println("s:${neg} mant:${mant} exp:${exp} float:${f} byte:${u1.u:016lx}") // println("s:${neg} mant:${mant} exp:${exp} float:${f} byte:${u1.u:016lx}")
// Exit early for easy cases. // Exit early for easy cases.
if (exp == strconv.maxexp64) || (exp == 0 && mant == 0) { if (exp == maxexp64) || (exp == 0 && mant == 0) {
return get_string_special(neg, exp == 0, mant == 0) return get_string_special(neg, exp == 0, mant == 0)
} }

View File

@ -0,0 +1,339 @@
module strconv
import math
fn (d Dec64) get_string_64(neg bool, i_n_digit int, i_pad_digit int) string {
mut n_digit := i_n_digit + 1
pad_digit := i_pad_digit + 1
mut out := d.m
mut d_exp := d.e
// mut out_len := decimal_len_64(out)
mut out_len := dec_digits(out)
out_len_original := out_len
mut fw_zeros := 0
if pad_digit > out_len {
fw_zeros = pad_digit - out_len
}
mut buf := []byte{len: (out_len + 6 + 1 + 1 + fw_zeros)} // sign + mant_len + . + e + e_sign + exp_len(2) + \0}
mut i := 0
if neg {
#buf.arr.arr[i.val] = '-'.charCodeAt()
i++
}
mut disp := 0
if out_len <= 1 {
disp = 1
}
// rounding last used digit
if n_digit < out_len {
// println("out:[$out]")
out += ten_pow_table_64[out_len - n_digit - 1] * 5 // round to up
out /= ten_pow_table_64[out_len - n_digit]
// println("out1:[$out] ${d.m / ten_pow_table_64[out_len - n_digit ]}")
if d.m / ten_pow_table_64[out_len - n_digit] < out {
d_exp++
n_digit++
}
// println("cmp: ${d.m/ten_pow_table_64[out_len - n_digit ]} ${out/ten_pow_table_64[out_len - n_digit ]}")
out_len = n_digit
// println("orig: ${out_len_original} new len: ${out_len} out:[$out]")
}
y := i + out_len
mut x := 0
for x < (out_len - disp - 1) {
#buf.arr.arr[y.val - x.val].val = '0'.charCodeAt() + Number(out.valueOf() % 10n)
out /= 10
i++
x++
}
// no decimal digits needed, end here
if i_n_digit == 0 {
res := ''
#buf.arr.arr.forEach((it) => it.val == 0 ? res.str : res.str += String.fromCharCode(it.val))
return res
}
if out_len >= 1 {
buf[y - x] = `.`
x++
i++
}
if y - x >= 0 {
#buf.arr.arr[y.val - x.val].val = '0'.charCodeAt() + Number(out.valueOf() % 10n)
i++
}
for fw_zeros > 0 {
#buf.arr.arr[i.val].val = '0'.charCodeAt()
i++
fw_zeros--
}
#buf.arr.arr[i.val].val = 'e'.charCodeAt()
i++
mut exp := d_exp + out_len_original - 1
if exp < 0 {
#buf.arr.arr[i.val].val = '-'.charCodeAt()
i++
exp = -exp
} else {
#buf.arr.arr[i.val].val = '+'.charCodeAt()
i++
}
// Always print at least two digits to match strconv's formatting.
d2 := exp % 10
exp /= 10
d1 := exp % 10
_ := d1
_ := d2
d0 := exp / 10
if d0 > 0 {
#buf.arr.arr[i].val = '0'.charCodeAt() + d0.val
i++
}
#buf.arr.arr[i].val = '0'.charCodeAt() + d1.val
i++
#buf.arr.arr[i].val = '0' + d2.val
i++
#buf.arr.arr[i].val = 0
res := ''
#buf.arr.arr.forEach((it) => it.val == 0 ? res.str : res.str += String.fromCharCode(it.val))
return res
}
fn f64_to_decimal_exact_int(i_mant u64, exp u64) (Dec64, bool) {
mut d := Dec64{}
e := exp - bias64
if e > mantbits64 {
return d, false
}
shift := mantbits64 - e
mant := i_mant | u64(0x0010_0000_0000_0000) // implicit 1
// mant := i_mant | (1 << mantbits64) // implicit 1
d.m = mant >> shift
if (d.m << shift) != mant {
return d, false
}
for (d.m % 10) == 0 {
d.m /= 10
d.e++
}
return d, true
}
fn f64_to_decimal(mant u64, exp u64) Dec64 {
mut e2 := 0
mut m2 := u64(0)
if exp == 0 {
// We subtract 2 so that the bounds computation has
// 2 additional bits.
e2 = 1 - bias64 - int(mantbits64) - 2
m2 = mant
} else {
e2 = int(exp) - bias64 - int(mantbits64) - 2
m2 = (u64(1) << mantbits64) | mant
}
even := (m2 & 1) == 0
accept_bounds := even
// Step 2: Determine the interval of valid decimal representations.
mv := u64(4 * m2)
mm_shift := bool_to_u64(mant != 0 || exp <= 1)
// Step 3: Convert to a decimal power base uing 128-bit arithmetic.
mut vr := u64(0)
mut vp := u64(0)
mut vm := u64(0)
mut e10 := 0
mut vm_is_trailing_zeros := false
mut vr_is_trailing_zeros := false
if e2 >= 0 {
// This expression is slightly faster than max(0, log10Pow2(e2) - 1).
q := log10_pow2(e2) - bool_to_u32(e2 > 3)
e10 = int(q)
k := pow5_inv_num_bits_64 + pow5_bits(int(q)) - 1
i := -e2 + int(q) + k
mul := pow5_inv_split_64[q]
vr = mul_shift_64(u64(4) * m2, mul, i)
vp = mul_shift_64(u64(4) * m2 + u64(2), mul, i)
vm = mul_shift_64(u64(4) * m2 - u64(1) - mm_shift, mul, i)
if q <= 21 {
// This should use q <= 22, but I think 21 is also safe.
// Smaller values may still be safe, but it's more
// difficult to reason about them. Only one of mp, mv,
// and mm can be a multiple of 5, if any.
if mv % 5 == 0 {
vr_is_trailing_zeros = multiple_of_power_of_five_64(mv, q)
} else if accept_bounds {
// Same as min(e2 + (^mm & 1), pow5Factor64(mm)) >= q
// <=> e2 + (^mm & 1) >= q && pow5Factor64(mm) >= q
// <=> true && pow5Factor64(mm) >= q, since e2 >= q.
vm_is_trailing_zeros = multiple_of_power_of_five_64(mv - 1 - mm_shift,
q)
} else if multiple_of_power_of_five_64(mv + 2, q) {
vp--
}
}
} else {
// This expression is slightly faster than max(0, log10Pow5(-e2) - 1).
q := log10_pow5(-e2) - bool_to_u32(-e2 > 1)
e10 = int(q) + e2
i := -e2 - int(q)
k := pow5_bits(i) - pow5_num_bits_64
j := int(q) - k
mul := pow5_split_64[i]
vr = mul_shift_64(u64(4) * m2, mul, j)
vp = mul_shift_64(u64(4) * m2 + u64(2), mul, j)
vm = mul_shift_64(u64(4) * m2 - u64(1) - mm_shift, mul, j)
if q <= 1 {
// {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
// mv = 4 * m2, so it always has at least two trailing 0 bits.
vr_is_trailing_zeros = true
if accept_bounds {
// mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1.
vm_is_trailing_zeros = (mm_shift == 1)
} else {
// mp = mv + 2, so it always has at least one trailing 0 bit.
vp--
}
} else if q < 63 { // TODO(ulfjack/cespare): Use a tighter bound here.
// We need to compute min(ntz(mv), pow5Factor64(mv) - e2) >= q - 1
// <=> ntz(mv) >= q - 1 && pow5Factor64(mv) - e2 >= q - 1
// <=> ntz(mv) >= q - 1 (e2 is negative and -e2 >= q)
// <=> (mv & ((1 << (q - 1)) - 1)) == 0
// We also need to make sure that the left shift does not overflow.
vr_is_trailing_zeros = multiple_of_power_of_two_64(mv, q - 1)
}
}
// Step 4: Find the shortest decimal representation
// in the interval of valid representations.
mut removed := 0
mut last_removed_digit := byte(0)
mut out := u64(0)
// On average, we remove ~2 digits.
if vm_is_trailing_zeros || vr_is_trailing_zeros {
// General case, which happens rarely (~0.7%).
for {
vp_div_10 := vp / 10
vm_div_10 := vm / 10
if vp_div_10 <= vm_div_10 {
break
}
vm_mod_10 := vm % 10
vr_div_10 := vr / 10
vr_mod_10 := vr % 10
vm_is_trailing_zeros = vm_is_trailing_zeros && vm_mod_10 == 0
vr_is_trailing_zeros = vr_is_trailing_zeros && (last_removed_digit == 0)
last_removed_digit = byte(vr_mod_10)
vr = vr_div_10
vp = vp_div_10
vm = vm_div_10
removed++
}
if vm_is_trailing_zeros {
for {
vm_div_10 := vm / 10
vm_mod_10 := vm % 10
if vm_mod_10 != 0 {
break
}
vp_div_10 := vp / 10
vr_div_10 := vr / 10
vr_mod_10 := vr % 10
vr_is_trailing_zeros = vr_is_trailing_zeros && (last_removed_digit == 0)
last_removed_digit = byte(vr_mod_10)
vr = vr_div_10
vp = vp_div_10
vm = vm_div_10
removed++
}
}
if vr_is_trailing_zeros && (last_removed_digit == 5) && (vr % 2) == 0 {
// Round even if the exact number is .....50..0.
last_removed_digit = 4
}
out = vr
// We need to take vr + 1 if vr is outside bounds
// or we need to round up.
if (vr == vm && (!accept_bounds || !vm_is_trailing_zeros)) || last_removed_digit >= 5 {
out++
}
} else {
// Specialized for the common case (~99.3%).
// Percentages below are relative to this.
mut round_up := false
for vp / 100 > vm / 100 {
// Optimization: remove two digits at a time (~86.2%).
round_up = (vr % 100) >= 50
vr /= 100
vp /= 100
vm /= 100
removed += 2
}
// Loop iterations below (approximately), without optimization above:
// 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02%
// Loop iterations below (approximately), with optimization above:
// 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02%
for vp / 10 > vm / 10 {
round_up = (vr % 10) >= 5
vr /= 10
vp /= 10
vm /= 10
removed++
}
// We need to take vr + 1 if vr is outside bounds
// or we need to round up.
out = vr + bool_to_u64(vr == vm || round_up)
}
return Dec64{
m: out
e: e10 + removed
}
}
//=============================================================================
// String Functions
//=============================================================================
// f64_to_str return a string in scientific notation with max n_digit after the dot
pub fn f64_to_str(f f64, n_digit int) string {
u := math.f64_bits(f)
neg := (u >> (mantbits64 + expbits64)) != 0
mant := u & ((u64(1) << mantbits64) - u64(1))
exp := (u >> mantbits64) & ((u64(1) << expbits64) - u64(1))
// println("s:${neg} mant:${mant} exp:${exp} float:${f} byte:${u1.u:016lx}")
// Exit early for easy cases.
if (exp == maxexp64) || (exp == 0 && mant == 0) {
return get_string_special(neg, exp == 0, mant == 0)
}
mut d, ok := f64_to_decimal_exact_int(mant, exp)
if !ok {
// println("to_decimal")
d = f64_to_decimal(mant, exp)
}
// println("${d.m} ${d.e}")
return d.get_string_64(neg, n_digit, 0)
}

View File

@ -0,0 +1,37 @@
module strconv
// pow of ten table used by n_digit reduction
const (
ten_pow_table_64 = [
u64(1),
u64(10),
u64(100),
u64(1000),
u64(10000),
u64(100000),
u64(1000000),
u64(10000000),
u64(100000000),
u64(1000000000),
u64(10000000000),
u64(100000000000),
u64(1000000000000),
u64(10000000000000),
u64(100000000000000),
u64(1000000000000000),
u64(10000000000000000),
u64(100000000000000000),
u64(1000000000000000000),
u64(10000000000000000000),
]
)
//=============================================================================
// Conversion Functions
//=============================================================================
const (
mantbits64 = u32(52)
expbits64 = u32(11)
bias64 = 1023 // f64 exponent bias
maxexp64 = 2047
)

View File

@ -86,7 +86,7 @@ pub fn format_dec_sb(d u64, p BF_param, mut res strings.Builder) {
i-- i--
} }
for j in 0 .. n_char { for _ in 0 .. n_char {
i++ i++
res.write_b(buf[i]) res.write_b(buf[i])
} }

View File

@ -15,12 +15,12 @@ fn (mut g JsGen) gen_plain_infix_expr(node ast.InfixExpr) {
g.write('BigInt(') g.write('BigInt(')
g.expr(node.left) g.expr(node.left)
g.gen_deref_ptr(node.left_type) g.gen_deref_ptr(node.left_type)
g.write('.val)') g.write('.valueOf())')
g.write(' $node.op.str() ') g.write(' $node.op.str() ')
g.write('BigInt(') g.write('BigInt(')
g.expr(node.right) g.expr(node.right)
g.gen_deref_ptr(node.left_type) g.gen_deref_ptr(node.left_type)
g.write('.val)') g.write('.valueOf())')
} else { } else {
g.expr(node.left) g.expr(node.left)
g.gen_deref_ptr(node.left_type) g.gen_deref_ptr(node.left_type)

View File

@ -979,16 +979,8 @@ fn (mut g JsGen) expr(node ast.Expr) {
} }
} else { } else {
g.write(node.op.str()) g.write(node.op.str())
g.expr(node.right)
if node.op in [.inc, .dec] { g.write('.val ')
g.expr(node.right)
g.write('.val ')
} else {
g.write('(')
g.expr(node.right)
g.write('.valueOf()')
g.write(')')
}
} }
} }
ast.RangeExpr { ast.RangeExpr {