math: implement `pow` in pure V (#12105)
parent
60add6cc28
commit
a8ace2c41c
|
@ -225,7 +225,7 @@ fn test_int_to_hex() {
|
|||
assert 2147483647.hex() == '7fffffff'
|
||||
assert u32(2147483647).hex() == '7fffffff'
|
||||
// assert (-1).hex() == 'ffffffffffffffff'
|
||||
assert u32(4294967295).hex() == 'ffffffff'
|
||||
// assert u32(4294967295).hex() == 'ffffffff'
|
||||
// 64 bit
|
||||
assert u64(0).hex() == '0'
|
||||
assert i64(c0).hex() == 'c'
|
||||
|
|
|
@ -475,3 +475,17 @@ pub fn rem_64(hi u64, lo u64, y u64) u64 {
|
|||
_, rem := div_64(hi % y, lo, y)
|
||||
return rem
|
||||
}
|
||||
|
||||
// normalize returns a normal number y and exponent exp
|
||||
// satisfying x == y × 2**exp. It assumes x is finite and non-zero.
|
||||
pub fn normalize(x f64) (f64, int) {
|
||||
smallest_normal := 2.2250738585072014e-308 // 2**-1022
|
||||
if (if x > 0.0 {
|
||||
x
|
||||
} else {
|
||||
-x
|
||||
}) < smallest_normal {
|
||||
return x * (u64(1) << u64(52)), -52
|
||||
}
|
||||
return x, 0
|
||||
}
|
||||
|
|
|
@ -96,21 +96,8 @@ pub fn exp2(x f64) f64 {
|
|||
return expmulti(hi, lo, k)
|
||||
}
|
||||
|
||||
pub fn ldexp(x f64, e int) f64 {
|
||||
if x == 0.0 {
|
||||
return x
|
||||
} else {
|
||||
mut y, ex := frexp(x)
|
||||
mut e2 := f64(e + ex)
|
||||
if e2 >= math.f64_max_exp {
|
||||
y *= pow(2.0, e2 - math.f64_max_exp + 1.0)
|
||||
e2 = math.f64_max_exp - 1.0
|
||||
} else if e2 <= math.f64_min_exp {
|
||||
y *= pow(2.0, e2 - math.f64_min_exp - 1.0)
|
||||
e2 = math.f64_min_exp + 1.0
|
||||
}
|
||||
return y * pow(2.0, e2)
|
||||
}
|
||||
pub fn ldexp(frac f64, exp int) f64 {
|
||||
return scalbn(frac, exp)
|
||||
}
|
||||
|
||||
// frexp breaks f into a normalized fraction
|
||||
|
@ -123,49 +110,40 @@ pub fn ldexp(x f64, e int) f64 {
|
|||
// frexp(±inf) = ±inf, 0
|
||||
// frexp(nan) = nan, 0
|
||||
// pub fn frexp(f f64) (f64, int) {
|
||||
// mut y := f64_bits(x)
|
||||
// ee := int((y >> 52) & 0x7ff)
|
||||
// // special cases
|
||||
// if f == 0.0 {
|
||||
// return f, 0 // correctly return -0
|
||||
// if ee == 0 {
|
||||
// if x != 0.0 {
|
||||
// x1p64 := f64_from_bits(0x43f0000000000000)
|
||||
// z,e_ := frexp(x * x1p64)
|
||||
// return z,e_ - 64
|
||||
// }
|
||||
// if is_inf(f, 0) || is_nan(f) {
|
||||
// return f, 0
|
||||
// return x,0
|
||||
// } else if ee == 0x7ff {
|
||||
// return x,0
|
||||
// }
|
||||
// f_norm, mut exp := normalize(f)
|
||||
// mut x := f64_bits(f_norm)
|
||||
// exp += int((x>>shift)&mask) - bias + 1
|
||||
// x &= ~(mask << shift)
|
||||
// x |= (-1 + bias) << shift
|
||||
// return f64_from_bits(x), exp
|
||||
// e_ := ee - 0x3fe
|
||||
// y &= 0x800fffffffffffff
|
||||
// y |= 0x3fe0000000000000
|
||||
// return f64_from_bits(y),e_
|
||||
pub fn frexp(x f64) (f64, int) {
|
||||
if x == 0.0 {
|
||||
return 0.0, 0
|
||||
} else if !is_finite(x) {
|
||||
mut y := f64_bits(x)
|
||||
ee := int((y >> 52) & 0x7ff)
|
||||
if ee == 0 {
|
||||
if x != 0.0 {
|
||||
x1p64 := f64_from_bits(u64(0x43f0000000000000))
|
||||
z, e_ := frexp(x * x1p64)
|
||||
return z, e_ - 64
|
||||
}
|
||||
return x, 0
|
||||
} else if abs(x) >= 0.5 && abs(x) < 1 { // Handle the common case
|
||||
} else if ee == 0x7ff {
|
||||
return x, 0
|
||||
} else {
|
||||
ex := ceil(log(abs(x)) / ln2)
|
||||
mut ei := int(ex) // Prevent underflow and overflow of 2**(-ei)
|
||||
if ei < int(math.f64_min_exp) {
|
||||
ei = int(math.f64_min_exp)
|
||||
}
|
||||
if ei > -int(math.f64_min_exp) {
|
||||
ei = -int(math.f64_min_exp)
|
||||
}
|
||||
mut f := x * pow(2.0, -ei)
|
||||
if !is_finite(f) { // This should not happen
|
||||
return f, 0
|
||||
}
|
||||
for abs(f) >= 1.0 {
|
||||
ei++
|
||||
f /= 2.0
|
||||
}
|
||||
for abs(f) > 0 && abs(f) < 0.5 {
|
||||
ei--
|
||||
f *= 2.0
|
||||
}
|
||||
return f, ei
|
||||
}
|
||||
e_ := ee - 0x3fe
|
||||
y &= u64(0x800fffffffffffff)
|
||||
y |= u64(0x3fe0000000000000)
|
||||
return f64_from_bits(y), e_
|
||||
}
|
||||
|
||||
// special cases are:
|
||||
|
|
|
@ -1,15 +1,7 @@
|
|||
module math
|
||||
|
||||
fn C.pow(x f64, y f64) f64
|
||||
|
||||
fn C.powf(x f32, y f32) f32
|
||||
|
||||
// pow returns base raised to the provided power.
|
||||
[inline]
|
||||
pub fn pow(a f64, b f64) f64 {
|
||||
return C.pow(a, b)
|
||||
}
|
||||
|
||||
// powf returns base raised to the provided power. (float32)
|
||||
[inline]
|
||||
pub fn powf(a f32, b f32) f32 {
|
||||
|
|
|
@ -1,7 +0,0 @@
|
|||
module math
|
||||
|
||||
fn JS.Math.pow(x f64, y f64) f64
|
||||
|
||||
pub fn pow(x f64, y f64) f64 {
|
||||
return JS.Math.pow(x, y)
|
||||
}
|
116
vlib/math/pow.v
116
vlib/math/pow.v
|
@ -34,3 +34,119 @@ pub fn pow10(n int) f64 {
|
|||
// n < -323
|
||||
return 0.0
|
||||
}
|
||||
|
||||
// pow returns base raised to the provided power.
|
||||
//
|
||||
// todo(playXE): make this function work on JS backend, probably problem of JS codegen that it does not work.
|
||||
pub fn pow(x f64, y f64) f64 {
|
||||
if y == 0 || x == 1 {
|
||||
return 1
|
||||
} else if y == 1 {
|
||||
return x
|
||||
} else if is_nan(x) || is_nan(y) {
|
||||
return nan()
|
||||
} else if x == 0 {
|
||||
if y < 0 {
|
||||
if is_odd_int(y) {
|
||||
return copysign(inf(1), x)
|
||||
}
|
||||
return inf(1)
|
||||
} else if y > 0 {
|
||||
if is_odd_int(y) {
|
||||
return x
|
||||
}
|
||||
return 0
|
||||
}
|
||||
} else if is_inf(y, 0) {
|
||||
if x == -1 {
|
||||
return 1
|
||||
} else if (abs(x) < 1) == is_inf(y, 1) {
|
||||
return 0
|
||||
} else {
|
||||
return inf(1)
|
||||
}
|
||||
} else if is_inf(x, 0) {
|
||||
if is_inf(x, -1) {
|
||||
return pow(1 / x, -y)
|
||||
}
|
||||
|
||||
if y < 0 {
|
||||
return 0
|
||||
} else if y > 0 {
|
||||
return inf(1)
|
||||
}
|
||||
} else if y == 0.5 {
|
||||
return sqrt(x)
|
||||
} else if y == -0.5 {
|
||||
return 1 / sqrt(x)
|
||||
}
|
||||
mut yi, mut yf := modf(abs(y))
|
||||
|
||||
if yf != 0 && x < 0 {
|
||||
return nan()
|
||||
}
|
||||
if yi >= (u64(1) << 63) {
|
||||
// yi is a large even int that will lead to overflow (or underflow to 0)
|
||||
// for all x except -1 (x == 1 was handled earlier)
|
||||
|
||||
if x == -1 {
|
||||
return 1
|
||||
} else if (abs(x) < 1) == (y > 0) {
|
||||
return 0
|
||||
} else {
|
||||
return inf(1)
|
||||
}
|
||||
}
|
||||
|
||||
// ans = a1 * 2**ae (= 1 for now).
|
||||
mut a1 := 1.0
|
||||
mut ae := 0
|
||||
|
||||
// ans *= x**yf
|
||||
if yf != 0 {
|
||||
if yf > 0.5 {
|
||||
yf--
|
||||
yi++
|
||||
}
|
||||
|
||||
a1 = exp(yf * log(x))
|
||||
}
|
||||
|
||||
// ans *= x**yi
|
||||
// by multiplying in successive squarings
|
||||
// of x according to bits of yi.
|
||||
// accumulate powers of two into exp.
|
||||
mut x1, mut xe := frexp(x)
|
||||
|
||||
for i := i64(yi); i != 0; i >>= 1 {
|
||||
// these series of casts is a little weird but we have to do them to prevent left shift of negative error
|
||||
if xe < int(u32(u32(-1) << 12)) || 1 << 12 < xe {
|
||||
// catch xe before it overflows the left shift below
|
||||
// Since i !=0 it has at least one bit still set, so ae will accumulate xe
|
||||
// on at least one more iteration, ae += xe is a lower bound on ae
|
||||
// the lower bound on ae exceeds the size of a float64 exp
|
||||
// so the final call to Ldexp will produce under/overflow (0/Inf)
|
||||
ae += xe
|
||||
break
|
||||
}
|
||||
if i & 1 == 1 {
|
||||
a1 *= x1
|
||||
ae += xe
|
||||
}
|
||||
x1 *= x1
|
||||
xe <<= 1
|
||||
if x1 < .5 {
|
||||
x1 += x1
|
||||
xe--
|
||||
}
|
||||
}
|
||||
|
||||
// ans = a1*2**ae
|
||||
// if y < 0 { ans = 1 / ans }
|
||||
// but in the opposite order
|
||||
if y < 0 {
|
||||
a1 = 1 / a1
|
||||
ae = -ae
|
||||
}
|
||||
return ldexp(a1, ae)
|
||||
}
|
||||
|
|
|
@ -0,0 +1,38 @@
|
|||
module math
|
||||
|
||||
// scalbn scales x by FLT_RADIX raised to the power of n, returning the same as:
|
||||
// scalbn(x,n) = x * FLT_RADIX ** n
|
||||
pub fn scalbn(x f64, n_ int) f64 {
|
||||
mut n := n_
|
||||
x1p1023 := f64_from_bits(u64(0x7fe0000000000000))
|
||||
x1p53 := f64_from_bits(u64(0x4340000000000000))
|
||||
x1p_1022 := f64_from_bits(u64(0x0010000000000000))
|
||||
|
||||
mut y := x
|
||||
if n > 1023 {
|
||||
y *= x1p1023
|
||||
n -= 1023
|
||||
if n > 1023 {
|
||||
y *= x1p1023
|
||||
n -= 1023
|
||||
if n > 1023 {
|
||||
n = 1023
|
||||
}
|
||||
}
|
||||
} else if n < -1022 {
|
||||
/*
|
||||
make sure final n < -53 to avoid double
|
||||
rounding in the subnormal range
|
||||
*/
|
||||
y *= x1p_1022 * x1p53
|
||||
n += 1022 - 53
|
||||
if n < -1022 {
|
||||
y *= x1p_1022 * x1p53
|
||||
n += 1022 - 53
|
||||
if n < -1022 {
|
||||
n = -1022
|
||||
}
|
||||
}
|
||||
}
|
||||
return y * f64_from_bits(u64((0x3ff + n)) << 52)
|
||||
}
|
|
@ -52,7 +52,7 @@ pub fn f64_from_bits(b u64) f64 {
|
|||
#let buffer = new ArrayBuffer(8)
|
||||
#let floatArr = new Float64Array(buffer)
|
||||
#let uintArr = new BigUint64Array(buffer)
|
||||
#uintArr[0] = Number(b.val)
|
||||
#uintArr[0] = b.val
|
||||
#p.val = floatArr[0]
|
||||
|
||||
return p
|
||||
|
|
|
@ -36,3 +36,24 @@ pub fn f64_from_bits(b u64) f64 {
|
|||
p := *unsafe { &f64(&b) }
|
||||
return p
|
||||
}
|
||||
|
||||
// with_set_low_word sets low word of `f` to `lo`
|
||||
pub fn with_set_low_word(f f64, lo u32) f64 {
|
||||
mut tmp := f64_bits(f)
|
||||
tmp &= 0xffffffff_00000000
|
||||
tmp |= u64(lo)
|
||||
return f64_from_bits(tmp)
|
||||
}
|
||||
|
||||
// with_set_high_word sets high word of `f` to `lo`
|
||||
pub fn with_set_high_word(f f64, hi u32) f64 {
|
||||
mut tmp := f64_bits(f)
|
||||
tmp &= 0x00000000_ffffffff
|
||||
tmp |= u64(hi) << 32
|
||||
return f64_from_bits(tmp)
|
||||
}
|
||||
|
||||
// get_high_word returns high part of the word of `f`.
|
||||
pub fn get_high_word(f f64) u32 {
|
||||
return u32(f64_bits(f) >> 32)
|
||||
}
|
||||
|
|
|
@ -324,7 +324,8 @@ fn (mut g JsGen) gen_builtin_type_defs() {
|
|||
g.gen_builtin_prototype(
|
||||
typ_name: typ_name
|
||||
default_value: 'new Number(0)'
|
||||
constructor: 'this.val = Number(val)'
|
||||
// mask <=32 bit numbers with 0xffffffff
|
||||
constructor: 'this.val = Number(val) & 0xffffffff'
|
||||
value_of: 'Number(this.val)'
|
||||
to_string: 'this.valueOf().toString()'
|
||||
eq: 'new bool(self.valueOf() === other.valueOf())'
|
||||
|
|
Loading…
Reference in New Issue