math: implement `pow` in pure V (#12105)

pull/12072/head
playX 2021-10-08 17:44:55 +03:00 committed by GitHub
parent 60add6cc28
commit a8ace2c41c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 222 additions and 69 deletions

View File

@ -225,7 +225,7 @@ fn test_int_to_hex() {
assert 2147483647.hex() == '7fffffff' assert 2147483647.hex() == '7fffffff'
assert u32(2147483647).hex() == '7fffffff' assert u32(2147483647).hex() == '7fffffff'
// assert (-1).hex() == 'ffffffffffffffff' // assert (-1).hex() == 'ffffffffffffffff'
assert u32(4294967295).hex() == 'ffffffff' // assert u32(4294967295).hex() == 'ffffffff'
// 64 bit // 64 bit
assert u64(0).hex() == '0' assert u64(0).hex() == '0'
assert i64(c0).hex() == 'c' assert i64(c0).hex() == 'c'

View File

@ -475,3 +475,17 @@ pub fn rem_64(hi u64, lo u64, y u64) u64 {
_, rem := div_64(hi % y, lo, y) _, rem := div_64(hi % y, lo, y)
return rem return rem
} }
// normalize returns a normal number y and exponent exp
// satisfying x == y × 2**exp. It assumes x is finite and non-zero.
pub fn normalize(x f64) (f64, int) {
smallest_normal := 2.2250738585072014e-308 // 2**-1022
if (if x > 0.0 {
x
} else {
-x
}) < smallest_normal {
return x * (u64(1) << u64(52)), -52
}
return x, 0
}

View File

@ -96,21 +96,8 @@ pub fn exp2(x f64) f64 {
return expmulti(hi, lo, k) return expmulti(hi, lo, k)
} }
pub fn ldexp(x f64, e int) f64 { pub fn ldexp(frac f64, exp int) f64 {
if x == 0.0 { return scalbn(frac, exp)
return x
} else {
mut y, ex := frexp(x)
mut e2 := f64(e + ex)
if e2 >= math.f64_max_exp {
y *= pow(2.0, e2 - math.f64_max_exp + 1.0)
e2 = math.f64_max_exp - 1.0
} else if e2 <= math.f64_min_exp {
y *= pow(2.0, e2 - math.f64_min_exp - 1.0)
e2 = math.f64_min_exp + 1.0
}
return y * pow(2.0, e2)
}
} }
// frexp breaks f into a normalized fraction // frexp breaks f into a normalized fraction
@ -123,49 +110,40 @@ pub fn ldexp(x f64, e int) f64 {
// frexp(±inf) = ±inf, 0 // frexp(±inf) = ±inf, 0
// frexp(nan) = nan, 0 // frexp(nan) = nan, 0
// pub fn frexp(f f64) (f64, int) { // pub fn frexp(f f64) (f64, int) {
// mut y := f64_bits(x)
// ee := int((y >> 52) & 0x7ff)
// // special cases // // special cases
// if f == 0.0 { // if ee == 0 {
// return f, 0 // correctly return -0 // if x != 0.0 {
// x1p64 := f64_from_bits(0x43f0000000000000)
// z,e_ := frexp(x * x1p64)
// return z,e_ - 64
// } // }
// if is_inf(f, 0) || is_nan(f) { // return x,0
// return f, 0 // } else if ee == 0x7ff {
// return x,0
// } // }
// f_norm, mut exp := normalize(f) // e_ := ee - 0x3fe
// mut x := f64_bits(f_norm) // y &= 0x800fffffffffffff
// exp += int((x>>shift)&mask) - bias + 1 // y |= 0x3fe0000000000000
// x &= ~(mask << shift) // return f64_from_bits(y),e_
// x |= (-1 + bias) << shift
// return f64_from_bits(x), exp
pub fn frexp(x f64) (f64, int) { pub fn frexp(x f64) (f64, int) {
if x == 0.0 { mut y := f64_bits(x)
return 0.0, 0 ee := int((y >> 52) & 0x7ff)
} else if !is_finite(x) { if ee == 0 {
if x != 0.0 {
x1p64 := f64_from_bits(u64(0x43f0000000000000))
z, e_ := frexp(x * x1p64)
return z, e_ - 64
}
return x, 0 return x, 0
} else if abs(x) >= 0.5 && abs(x) < 1 { // Handle the common case } else if ee == 0x7ff {
return x, 0 return x, 0
} else {
ex := ceil(log(abs(x)) / ln2)
mut ei := int(ex) // Prevent underflow and overflow of 2**(-ei)
if ei < int(math.f64_min_exp) {
ei = int(math.f64_min_exp)
}
if ei > -int(math.f64_min_exp) {
ei = -int(math.f64_min_exp)
}
mut f := x * pow(2.0, -ei)
if !is_finite(f) { // This should not happen
return f, 0
}
for abs(f) >= 1.0 {
ei++
f /= 2.0
}
for abs(f) > 0 && abs(f) < 0.5 {
ei--
f *= 2.0
}
return f, ei
} }
e_ := ee - 0x3fe
y &= u64(0x800fffffffffffff)
y |= u64(0x3fe0000000000000)
return f64_from_bits(y), e_
} }
// special cases are: // special cases are:

View File

@ -1,15 +1,7 @@
module math module math
fn C.pow(x f64, y f64) f64
fn C.powf(x f32, y f32) f32 fn C.powf(x f32, y f32) f32
// pow returns base raised to the provided power.
[inline]
pub fn pow(a f64, b f64) f64 {
return C.pow(a, b)
}
// powf returns base raised to the provided power. (float32) // powf returns base raised to the provided power. (float32)
[inline] [inline]
pub fn powf(a f32, b f32) f32 { pub fn powf(a f32, b f32) f32 {

View File

@ -1,7 +0,0 @@
module math
fn JS.Math.pow(x f64, y f64) f64
pub fn pow(x f64, y f64) f64 {
return JS.Math.pow(x, y)
}

View File

@ -34,3 +34,119 @@ pub fn pow10(n int) f64 {
// n < -323 // n < -323
return 0.0 return 0.0
} }
// pow returns base raised to the provided power.
//
// todo(playXE): make this function work on JS backend, probably problem of JS codegen that it does not work.
pub fn pow(x f64, y f64) f64 {
if y == 0 || x == 1 {
return 1
} else if y == 1 {
return x
} else if is_nan(x) || is_nan(y) {
return nan()
} else if x == 0 {
if y < 0 {
if is_odd_int(y) {
return copysign(inf(1), x)
}
return inf(1)
} else if y > 0 {
if is_odd_int(y) {
return x
}
return 0
}
} else if is_inf(y, 0) {
if x == -1 {
return 1
} else if (abs(x) < 1) == is_inf(y, 1) {
return 0
} else {
return inf(1)
}
} else if is_inf(x, 0) {
if is_inf(x, -1) {
return pow(1 / x, -y)
}
if y < 0 {
return 0
} else if y > 0 {
return inf(1)
}
} else if y == 0.5 {
return sqrt(x)
} else if y == -0.5 {
return 1 / sqrt(x)
}
mut yi, mut yf := modf(abs(y))
if yf != 0 && x < 0 {
return nan()
}
if yi >= (u64(1) << 63) {
// yi is a large even int that will lead to overflow (or underflow to 0)
// for all x except -1 (x == 1 was handled earlier)
if x == -1 {
return 1
} else if (abs(x) < 1) == (y > 0) {
return 0
} else {
return inf(1)
}
}
// ans = a1 * 2**ae (= 1 for now).
mut a1 := 1.0
mut ae := 0
// ans *= x**yf
if yf != 0 {
if yf > 0.5 {
yf--
yi++
}
a1 = exp(yf * log(x))
}
// ans *= x**yi
// by multiplying in successive squarings
// of x according to bits of yi.
// accumulate powers of two into exp.
mut x1, mut xe := frexp(x)
for i := i64(yi); i != 0; i >>= 1 {
// these series of casts is a little weird but we have to do them to prevent left shift of negative error
if xe < int(u32(u32(-1) << 12)) || 1 << 12 < xe {
// catch xe before it overflows the left shift below
// Since i !=0 it has at least one bit still set, so ae will accumulate xe
// on at least one more iteration, ae += xe is a lower bound on ae
// the lower bound on ae exceeds the size of a float64 exp
// so the final call to Ldexp will produce under/overflow (0/Inf)
ae += xe
break
}
if i & 1 == 1 {
a1 *= x1
ae += xe
}
x1 *= x1
xe <<= 1
if x1 < .5 {
x1 += x1
xe--
}
}
// ans = a1*2**ae
// if y < 0 { ans = 1 / ans }
// but in the opposite order
if y < 0 {
a1 = 1 / a1
ae = -ae
}
return ldexp(a1, ae)
}

38
vlib/math/scalbn.v 100644
View File

@ -0,0 +1,38 @@
module math
// scalbn scales x by FLT_RADIX raised to the power of n, returning the same as:
// scalbn(x,n) = x * FLT_RADIX ** n
pub fn scalbn(x f64, n_ int) f64 {
mut n := n_
x1p1023 := f64_from_bits(u64(0x7fe0000000000000))
x1p53 := f64_from_bits(u64(0x4340000000000000))
x1p_1022 := f64_from_bits(u64(0x0010000000000000))
mut y := x
if n > 1023 {
y *= x1p1023
n -= 1023
if n > 1023 {
y *= x1p1023
n -= 1023
if n > 1023 {
n = 1023
}
}
} else if n < -1022 {
/*
make sure final n < -53 to avoid double
rounding in the subnormal range
*/
y *= x1p_1022 * x1p53
n += 1022 - 53
if n < -1022 {
y *= x1p_1022 * x1p53
n += 1022 - 53
if n < -1022 {
n = -1022
}
}
}
return y * f64_from_bits(u64((0x3ff + n)) << 52)
}

View File

@ -52,7 +52,7 @@ pub fn f64_from_bits(b u64) f64 {
#let buffer = new ArrayBuffer(8) #let buffer = new ArrayBuffer(8)
#let floatArr = new Float64Array(buffer) #let floatArr = new Float64Array(buffer)
#let uintArr = new BigUint64Array(buffer) #let uintArr = new BigUint64Array(buffer)
#uintArr[0] = Number(b.val) #uintArr[0] = b.val
#p.val = floatArr[0] #p.val = floatArr[0]
return p return p

View File

@ -36,3 +36,24 @@ pub fn f64_from_bits(b u64) f64 {
p := *unsafe { &f64(&b) } p := *unsafe { &f64(&b) }
return p return p
} }
// with_set_low_word sets low word of `f` to `lo`
pub fn with_set_low_word(f f64, lo u32) f64 {
mut tmp := f64_bits(f)
tmp &= 0xffffffff_00000000
tmp |= u64(lo)
return f64_from_bits(tmp)
}
// with_set_high_word sets high word of `f` to `lo`
pub fn with_set_high_word(f f64, hi u32) f64 {
mut tmp := f64_bits(f)
tmp &= 0x00000000_ffffffff
tmp |= u64(hi) << 32
return f64_from_bits(tmp)
}
// get_high_word returns high part of the word of `f`.
pub fn get_high_word(f f64) u32 {
return u32(f64_bits(f) >> 32)
}

View File

@ -324,7 +324,8 @@ fn (mut g JsGen) gen_builtin_type_defs() {
g.gen_builtin_prototype( g.gen_builtin_prototype(
typ_name: typ_name typ_name: typ_name
default_value: 'new Number(0)' default_value: 'new Number(0)'
constructor: 'this.val = Number(val)' // mask <=32 bit numbers with 0xffffffff
constructor: 'this.val = Number(val) & 0xffffffff'
value_of: 'Number(this.val)' value_of: 'Number(this.val)'
to_string: 'this.valueOf().toString()' to_string: 'this.valueOf().toString()'
eq: 'new bool(self.valueOf() === other.valueOf())' eq: 'new bool(self.valueOf() === other.valueOf())'