math: allow i64 in digits function and add count_digits function (#13729)
parent
c8b0f51c13
commit
a8f6574471
|
@ -42,24 +42,70 @@ pub fn degrees(radians f64) f64 {
|
|||
return radians * (180.0 / pi)
|
||||
}
|
||||
|
||||
// digits returns an array of the digits of n in the given base.
|
||||
pub fn digits(_n int, base int) []int {
|
||||
if base < 2 {
|
||||
panic('digits: Cannot find digits of n with base $base')
|
||||
[params]
|
||||
pub struct DigitParams {
|
||||
base int = 10
|
||||
reverse bool
|
||||
}
|
||||
mut n := _n
|
||||
|
||||
// digits returns an array of the digits of `num` in the given optional `base`.
|
||||
// The `num` argument accepts any integer type (i8|i16|int|isize|i64), and will be cast to i64
|
||||
// The `base:` argument is optional, it will default to base: 10.
|
||||
// This function returns an array of the digits in reverse order i.e.:
|
||||
// Example: assert math.digits(12345, base: 10) == [5,4,3,2,1]
|
||||
// You can also use it, with an explicit `reverse: true` parameter,
|
||||
// (it will do a reverse of the result array internally => slower):
|
||||
// Example: assert math.digits(12345, reverse: true) == [1,2,3,4,5]
|
||||
pub fn digits(num i64, params DigitParams) []int {
|
||||
// set base to 10 initially and change only if base is explicitly set.
|
||||
mut b := params.base
|
||||
if b < 2 {
|
||||
panic('digits: Cannot find digits of n with base $b')
|
||||
}
|
||||
mut n := num
|
||||
mut sign := 1
|
||||
if n < 0 {
|
||||
sign = -1
|
||||
n = -n
|
||||
}
|
||||
|
||||
mut res := []int{}
|
||||
for n != 0 {
|
||||
res << (n % base) * sign
|
||||
n /= base
|
||||
}
|
||||
if n == 0 {
|
||||
// short-circuit and return 0
|
||||
res << 0
|
||||
return res
|
||||
}
|
||||
for n != 0 {
|
||||
next_n := n / b
|
||||
res << int(n - next_n * b)
|
||||
n = next_n
|
||||
}
|
||||
|
||||
if sign == -1 {
|
||||
res[res.len - 1] *= sign
|
||||
}
|
||||
|
||||
if params.reverse {
|
||||
res = res.reverse()
|
||||
}
|
||||
|
||||
return res
|
||||
}
|
||||
|
||||
// count_digits return the number of digits in the number passed.
|
||||
// Number argument accepts any integer type (i8|i16|int|isize|i64) and will be cast to i64
|
||||
pub fn count_digits(number i64) int {
|
||||
mut n := number
|
||||
if n == 0 {
|
||||
return 1
|
||||
}
|
||||
mut c := 0
|
||||
for n != 0 {
|
||||
n = n / 10
|
||||
c++
|
||||
}
|
||||
return c
|
||||
}
|
||||
|
||||
// minmax returns the minimum and maximum value of the two provided.
|
||||
pub fn minmax(a f64, b f64) (f64, f64) {
|
||||
|
|
|
@ -914,14 +914,40 @@ fn test_lcm() {
|
|||
}
|
||||
|
||||
fn test_digits() {
|
||||
digits_in_10th_base := digits(125, 10)
|
||||
assert digits_in_10th_base[0] == 5
|
||||
assert digits_in_10th_base[1] == 2
|
||||
assert digits_in_10th_base[2] == 1
|
||||
digits_in_16th_base := digits(15, 16)
|
||||
assert digits_in_16th_base[0] == 15
|
||||
negative_digits := digits(-4, 2)
|
||||
assert negative_digits[2] == -1
|
||||
// a small sanity check with a known number like 100,
|
||||
// just written in different base systems:
|
||||
assert digits(100, reverse: true) == [1, 0, 0]
|
||||
assert digits(100, base: 2, reverse: true) == [1, 1, 0, 0, 1, 0, 0]
|
||||
assert digits(100, base: 3, reverse: true) == [1, 0, 2, 0, 1]
|
||||
assert digits(100, base: 4, reverse: true) == [1, 2, 1, 0]
|
||||
assert digits(100, base: 8, reverse: true) == [1, 4, 4]
|
||||
assert digits(100, base: 10, reverse: true) == [1, 0, 0]
|
||||
assert digits(100, base: 12, reverse: true) == [8, 4]
|
||||
assert digits(100, base: 16, reverse: true) == [6, 4]
|
||||
assert digits(100, base: 20, reverse: true) == [5, 0]
|
||||
assert digits(100, base: 32, reverse: true) == [3, 4]
|
||||
assert digits(100, base: 64, reverse: true) == [1, 36]
|
||||
assert digits(100, base: 128, reverse: true) == [100]
|
||||
assert digits(100, base: 256, reverse: true) == [100]
|
||||
|
||||
assert digits(1234432112344321) == digits(1234432112344321, reverse: true)
|
||||
assert digits(1234432112344321) == [1, 2, 3, 4, 4, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 1]
|
||||
|
||||
assert digits(125, base: 10, reverse: true) == [1, 2, 5]
|
||||
assert digits(125, base: 10).reverse() == [1, 2, 5]
|
||||
|
||||
assert digits(15, base: 16, reverse: true) == [15]
|
||||
assert digits(127, base: 16, reverse: true) == [7, 15]
|
||||
assert digits(65535, base: 16, reverse: true) == [15, 15, 15, 15]
|
||||
assert digits(-65535, base: 16, reverse: true) == [-15, 15, 15, 15]
|
||||
|
||||
assert digits(-127) == [7, 2, -1]
|
||||
assert digits(-127).reverse() == [-1, 2, 7]
|
||||
assert digits(-127, reverse: true) == [-1, 2, 7]
|
||||
|
||||
assert digits(234, base: 7).reverse() == [4, 5, 3]
|
||||
|
||||
assert digits(67432, base: 12).reverse() == [3, 3, 0, 3, 4]
|
||||
}
|
||||
|
||||
// Check that math functions of high angle values
|
||||
|
@ -966,3 +992,21 @@ fn test_powi() {
|
|||
assert powi(0, -2) == -1 // div by 0
|
||||
assert powi(2, -1) == 0
|
||||
}
|
||||
|
||||
fn test_count_digits() {
|
||||
assert count_digits(-999) == 3
|
||||
assert count_digits(-100) == 3
|
||||
assert count_digits(-99) == 2
|
||||
assert count_digits(-10) == 2
|
||||
assert count_digits(-1) == 1
|
||||
assert count_digits(0) == 1
|
||||
assert count_digits(1) == 1
|
||||
assert count_digits(10) == 2
|
||||
assert count_digits(99) == 2
|
||||
assert count_digits(100) == 3
|
||||
assert count_digits(999) == 3
|
||||
//
|
||||
assert count_digits(12345) == 5
|
||||
assert count_digits(123456789012345) == 15
|
||||
assert count_digits(-67345) == 5
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue