vlib: remove unused `glm` module (#12274)

pull/12278/head
Delyan Angelov 2021-10-22 22:23:14 +03:00 committed by GitHub
parent 864d6eae6b
commit aa22751d26
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 0 additions and 583 deletions

View File

@ -1,428 +0,0 @@
// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module glm
import math
/*
#flag -lmyglm
# f32* myglm_ortho(f32, f32, f32, f32);
# f32* myglm_translate(f32, f32, f32);
*/
// # f32* myglm_rotate(f32 *m, f32 angle, f32, f32, f32);
// # f32* myglm_perspective(f32, f32, f32, f32);
// # f32* myglm_look_at(glm__Vec3, glm__Vec3, glm__Vec3);
// # glm__Vec3 myglm_mult(glm__Vec3, glm__Vec3);
// # glm__Vec3 myglm_cross(glm__Vec3, glm__Vec3);
// # glm__Vec3 myglm_normalize(glm__Vec3);
pub struct Mat4 {
pub:
data &f32
}
struct Vec2 {
x f32
y f32
}
struct Vec3 {
x f32
y f32
z f32
}
pub fn vec3(x f32, y f32, z f32) Vec3 {
res := Vec3{
x: x
y: y
z: z
}
return res
}
fn mat4(f &f32) Mat4 {
res := Mat4{
data: unsafe { f }
}
return res
}
pub fn (v Vec3) str() string {
return 'Vec3{ $v.x, $v.y, $v.z }'
}
pub fn (v Vec2) str() string {
return 'Vec3{ $v.x, $v.y }'
}
pub fn (m Mat4) str() string {
mut s := '[ '
for i in 0 .. 4 {
if i != 0 {
s += ' '
}
for j in 0 .. 4 {
val := unsafe { m.data[i * 4 + j] }
s += '${val:5.2f} '
}
if i != 3 {
s += '\n'
}
}
s += ']'
return s
}
fn vec2(x int, y int) Vec2 {
res := Vec2{
x: f32(x)
y: f32(y)
}
return res
}
fn (a Vec3) add(b Vec3) Vec3 {
res := Vec3{
x: a.x + b.x
y: a.y + b.y
z: a.z + b.z
}
return res
}
fn (a Vec3) sub(b Vec3) Vec3 {
res := Vec3{
x: a.x - b.x
y: a.y - b.y
z: a.z - b.z
}
return res
}
// fn (a Vec3) mult(b Vec3) Vec3 {
// # return myglm_mult(a,b);
// }
fn (a Vec3) mult_scalar(b f32) Vec3 {
res := Vec3{
x: a.x * b
y: a.y * b
z: a.z * b
}
return res
}
fn (a Vec3) print() {
x := a.x
y := a.y
z := a.z
C.printf(c'vec3{%f,%f,%f}\n', x, y, z)
// println('vec3{$x,$y,$z}')
}
/*
fn rotate(m Mat4, angle f32, vec Vec3) Mat4 {
// # t_mat4 m;
// println('rotate done')
# return glm__mat4( myglm_rotate(m.data, angle, vec.x,vec.y,vec.z) );
return Mat4{}
}
*/
fn f32_calloc(n int) &f32 {
return voidptr(vcalloc_noscan(n * int(sizeof(f32))))
}
// fn translate(vec Vec3) *f32 {
pub fn translate(m Mat4, v Vec3) Mat4 {
// # return glm__mat4(myglm_translate(vec.x,vec.y,vec.z) );
a := m.data
mut out := f32_calloc(16)
x := v.x
y := v.y
z := v.z
unsafe {
a00 := a[0]
a01 := a[1]
a02 := a[2]
a03 := a[3]
a10 := a[4]
a11 := a[5]
a12 := a[6]
a13 := a[7]
a20 := a[8]
a21 := a[9]
a22 := a[10]
a23 := a[11]
out[0] = a00
out[1] = a01
out[2] = a02
out[3] = a03
out[4] = a10
out[5] = a11
out[6] = a12
out[7] = a13
out[8] = a20
out[9] = a21
out[10] = a22
out[11] = a23
out[12] = a00 * x + a10 * y + a20 * z + a[12]
out[13] = a01 * x + a11 * y + a21 * z + a[13]
out[14] = a02 * x + a12 * y + a22 * z + a[14]
out[15] = a03 * x + a13 * y + a23 * z + a[15]
}
return mat4(out)
}
/*
fn normalize(vec Vec3) Vec3 {
# return myglm_normalize(vec);
return Vec3{}
}
*/
// https://github.com/g-truc/glm/blob/0ceb2b755fb155d593854aefe3e45d416ce153a4/glm/ext/matrix_clip_space.inl
pub fn ortho(left f32, right f32, bottom f32, top f32) Mat4 {
// println('glm ortho($left, $right, $bottom, $top)')
// mat<4, 4, T, defaultp> Result(static_cast<T>(1));
n := 16
mut res := f32_calloc(n)
unsafe {
res[0] = 2.0 / (right - left)
res[5] = 2.0 / (top - bottom)
res[10] = 1.0
res[12] = -(right + left) / (right - left)
res[13] = -(top + bottom) / (top - bottom)
res[15] = 1.0
}
return mat4(res)
}
// https://github.com/g-truc/glm/blob/0ceb2b755fb155d593854aefe3e45d416ce153a4/glm/ext/matrix_clip_space.inl
pub fn ortho_zo(left f32, right f32, bottom f32, top f32, zNear f32, zFar f32) Mat4 {
// println('glm ortho($left, $right, $bottom, $top)')
// mat<4, 4, T, defaultp> Result(static_cast<T>(1));
n := 16
mut res := f32_calloc(n)
unsafe {
res[0] = 2.0 / (right - left)
res[5] = 2.0 / (top - bottom)
res[10] = 1.0
res[12] = -(right + left) / (right - left)
res[13] = -(top + bottom) / (top - bottom)
res[14] = -zNear / (zFar - zNear)
res[15] = 1.0
}
return mat4(res)
}
// fn scale(a *f32, v Vec3) *f32 {
pub fn scale(m Mat4, v Vec3) Mat4 {
a := m.data
mut out := f32_calloc(16)
x := v.x
y := v.y
z := v.z
unsafe {
out[0] = a[0] * v.x
out[1] = a[1] * x
out[2] = a[2] * x
out[3] = a[3] * x
out[4] = a[4] * y
out[5] = a[5] * y
out[6] = a[6] * y
out[7] = a[7] * y
out[8] = a[8] * z
out[9] = a[9] * z
out[10] = a[10] * z
out[11] = a[11] * z
out[12] = a[12]
out[13] = a[13]
out[14] = a[14]
out[15] = a[15]
}
return mat4(out)
}
// multiplies two matrices
pub fn mult(a Mat4, b Mat4) Mat4 {
mut out := f32_calloc(16)
for i in 0 .. 4 {
for r in 0 .. 4 {
mut prod := f32(0)
for c in 0 .. 4 {
prod += unsafe { a.data[c * 4 + r] * b.data[i * 4 + c] }
}
unsafe {
out[i * 4 + r] = prod
}
}
}
return mat4(out)
}
pub fn rotate(angle f32, axis Vec3, src Mat4) Mat4 {
c := f32(math.cos(angle))
s := f32(math.sin(angle))
oneminusc := f32(1.0) - c
xy := axis.x * axis.y
yz := axis.y * axis.z
xz := axis.x * axis.z
xs := axis.x * s
ys := axis.y * s
zs := axis.z * s
f00 := axis.x * axis.x * oneminusc + c
f01 := xy * oneminusc + zs
f02 := xz * oneminusc - ys
f10 := xy * oneminusc - zs
f11 := axis.y * axis.y * oneminusc + c
f12 := yz * oneminusc + xs
f20 := xz * oneminusc + ys
f21 := yz * oneminusc - xs
f22 := axis.z * axis.z * oneminusc + c
data := src.data
unsafe {
t00 := data[0] * f00 + data[4] * f01 + data[8] * f02
t01 := data[1] * f00 + data[5] * f01 + data[9] * f02
t02 := data[2] * f00 + data[6] * f01 + data[10] * f02
t03 := data[3] * f00 + data[7] * f01 + data[11] * f02
t10 := data[0] * f10 + data[4] * f11 + data[8] * f12
t11 := data[1] * f10 + data[5] * f11 + data[9] * f12
t12 := data[2] * f10 + data[6] * f11 + data[10] * f12
t13 := data[3] * f10 + data[7] * f11 + data[11] * f12
mut dest := src.data
dest[8] = data[0] * f20 + data[4] * f21 + data[8] * f22
dest[9] = data[1] * f20 + data[5] * f21 + data[9] * f22
dest[10] = data[2] * f20 + data[6] * f21 + data[10] * f22
dest[11] = data[3] * f20 + data[7] * f21 + data[11] * f22
dest[0] = t00
dest[1] = t01
dest[2] = t02
dest[3] = t03
dest[4] = t10
dest[5] = t11
dest[6] = t12
dest[7] = t13
return mat4(dest)
}
}
// fn rotate_z(a *f32, rad f32) *f32 {
pub fn rotate_z(m Mat4, rad f32) Mat4 {
a := m.data
mut out := f32_calloc(16)
s := f32(math.sin(rad))
c := f32(math.cos(rad))
unsafe {
a00 := a[0]
a01 := a[1]
a02 := a[2]
a03 := a[3]
a10 := a[4]
a11 := a[5]
a12 := a[6]
a13 := a[7]
out[8] = a[8]
out[9] = a[9]
out[10] = a[10]
out[11] = a[11]
out[12] = a[12]
out[13] = a[13]
out[14] = a[14]
out[15] = a[15]
// Perform axis-specific matrix multiplication
out[0] = a00 * c + a10 * s
out[1] = a01 * c + a11 * s
out[2] = a02 * c + a12 * s
out[3] = a03 * c + a13 * s
out[4] = a10 * c - a00 * s
out[5] = a11 * c - a01 * s
out[6] = a12 * c - a02 * s
out[7] = a13 * c - a03 * s
}
return mat4(out)
}
pub fn identity() Mat4 {
// 1 0 0 0
// 0 1 0 0
// 0 0 1 0
// 0 0 0 1
n := 16
mut res := f32_calloc(int(sizeof(f32)) * n)
unsafe {
res[0] = 1
res[5] = 1
res[10] = 1
res[15] = 1
}
return mat4(res)
}
// returns *f32 without allocation
pub fn identity2(mut res &f32) {
res[0] = 1
res[5] = 1
res[10] = 1
res[15] = 1
// # f32 f[16]={0};// for (int i =0;i<16;i++)
// # printf("!!%d\n", f[0]);
// # glm__identity2(&f);
// # gl__Shader_set_mat4(shader, tos2("projection"), f) ;
}
pub fn identity3() []f32 {
res := [f32(1.0), 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]
return res
}
// https://github.com/toji/gl-matrix/blob/1549cf21dfa14a2bc845993485343d519cf064fe/src/gl-matrix/mat4.js
fn ortho_js(left f32, right f32, bottom f32, top f32) &f32 {
// mynear := 1
// myfar := 1
lr := 1.0 / (left - right)
bt := 1.0 / (bottom - top)
nf := f32(1.0) / 1.0 // (mynear -myfar)
unsafe {
mut out := &f32(malloc_noscan(int(sizeof(f32) * 16)))
out[0] = -2.0 * lr
out[1] = 0
out[2] = 0
out[3] = 0
out[4] = 0
out[5] = -2.0 * bt
out[6] = 0
out[7] = 0
out[8] = 0
out[9] = 0
out[10] = 2.0 * nf
out[11] = 0
out[12] = (left + right) * lr
out[13] = (top + bottom) * bt
out[14] = 1.0 * nf // (far + near) * nf;
out[15] = 1
return out
}
// f := 0.0
// return &f
}
// fn ortho_old(a, b, c, d f32) *f32 {
// # return myglm_ortho(a,b,c,d);
// }
fn cross(a Vec3, b Vec3) Vec3 {
// # return myglm_cross(a,b);
return Vec3{}
}
/*
fn perspective(degrees f32, ratio f32, a, b f32) Mat4 {
// println('lang per degrees=$degrees ratio=$ratio a=$a b=$b')
// # printf("lang pers degrees=%f ratio=%f a=%f b=%f\n", degrees, ratio, a,b);
# return glm__mat4( myglm_perspective(degrees, ratio, a,b) ) ;
return Mat4{}
}
fn look_at(eye, center, up Vec3) Mat4 {
# return glm__mat4( myglm_look_at(eye, center, up) ) ;
return Mat4{}
}
*/

View File

@ -1,155 +0,0 @@
// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
// might need special case for this
// import gl
import glm
fn cmp(a f32, b f32) bool {
return int(a * 1000) == int(b * 1000)
}
fn test_ortho() {
projection := glm.ortho(0, 200, 400, 0)
$if debug {
println(unsafe { projection.data[0] })
}
unsafe {
assert cmp(projection.data[0], 0.01)
assert cmp(projection.data[1], 0.000000)
assert cmp(projection.data[2], 0.000000)
assert cmp(projection.data[3], 0.000000)
assert cmp(projection.data[4], 0.000000)
assert cmp(projection.data[5], -0.005000)
assert cmp(projection.data[6], 0.000000)
assert cmp(projection.data[7], 0.000000)
assert cmp(projection.data[8], 0.000000)
assert cmp(projection.data[9], 0.000000)
assert cmp(projection.data[10], 1.000000)
assert cmp(projection.data[11], 0.000000)
assert cmp(projection.data[12], -1.000000)
assert cmp(projection.data[13], 1.000000)
assert cmp(projection.data[14], 0.000000)
assert cmp(projection.data[15], 1.000000)
}
// f := gg.ortho(1,2,3,4)
/*
// for debugging broken tetris in gg.o
# projection.data[0]=0.010000;
# projection.data[1]=0.000000;
# projection.data[2]=0.000000;
# projection.data[3]=0.000000;
# projection.data[4]=0.000000;
# projection.data[5]=-0.005000;
# projection.data[6]=0.000000;
# projection.data[7]=0.000000;
# projection.data[8]=0.000000;
# projection.data[9]=0.000000;
# projection.data[10]=1.000000;
# projection.data[11]=0.000000;
# projection.data[12]=-1.000000;
# projection.data[13]=1.000000;
# projection.data[14]=0.000000;
# projection.data[15]=1.000000;
*/
}
fn test_rotate() {
$if debug {
println('rotate')
}
mut m := glm.identity()
m = glm.scale(m, glm.vec3(2, 2, 2))
$if debug {
println(m)
}
m = glm.rotate_z(m, 1)
$if debug {
println(m)
}
mut m1 := glm.identity()
mut m2 := glm.identity()
m1 = glm.rotate(1, glm.vec3(1, 0, 0), m1)
m2 = glm.rotate(1, glm.vec3(0, 1, 0), m2)
mut same := true
for i in 0 .. 15 {
if unsafe { m1.data[i] } != unsafe { m2.data[i] } {
same = false
}
}
assert !same
}
fn test_translate() {
mut m := glm.identity()
m = glm.translate(m, glm.vec3(0, 0, -0.5))
$if debug {
println(m)
}
unsafe {
assert m.data[0] == 1.0
assert m.data[1] == 0.0
assert m.data[2] == 0.0
assert m.data[3] == 0.0
//
assert m.data[4] == 0.0
assert m.data[5] == 1.0
assert m.data[6] == 0.0
assert m.data[7] == 0.0
assert m.data[8] == 0.0
assert m.data[9] == 0.0
assert m.data[10] == 1.0
assert m.data[11] == 0.0
//
assert m.data[12] == 0.0
assert m.data[13] == 0.0
assert m.data[14] == -0.5
assert m.data[15] == 1.0
}
}
fn f32_calloc(n int) &f32 {
return voidptr(vcalloc(n * int(sizeof(f32))))
}
fn test_mult1() {
mut adata := f32_calloc(16)
unsafe {
adata[1 * 4 + 1] = 6
adata[2 * 4 + 3] = 2
adata[0 * 4 + 2] = 3
adata[2 * 4 + 1] = 1
}
mut bdata := f32_calloc(16)
unsafe {
bdata[1 * 4 + 1] = -2
bdata[2 * 4 + 3] = 1
bdata[0 * 4 + 2] = 6
bdata[2 * 4 + 1] = -3
}
mut expected := f32_calloc(16)
unsafe {
expected[0 * 4 + 0] = 0 // 0*0+0*0+0*6+0*0
expected[0 * 4 + 1] = 6 // 0*0+0*6+1*6+0*0
expected[0 * 4 + 2] = 0 // 3*0+0*0+0*6+0*0
expected[0 * 4 + 3] = 12 // 0*0+0*0+2*6+0*0
expected[1 * 4 + 0] = 0 // 0*0+0*-2+0*0+0*0
expected[1 * 4 + 1] = -12 // 0*0­+6*-2+1*0­+0*0
expected[1 * 4 + 2] = 0 // 3*0­+0*-2­+0*0­+0*0
expected[1 * 4 + 3] = 0 // 0*0­+0*-2­+2*0­+0*0
expected[2 * 4 + 0] = 0 // 0*0­+0*-3­+0*0­+0*1
expected[2 * 4 + 1] = -18 // 0*0­+6*-3­+1*0­+0*1
expected[2 * 4 + 2] = 0 // 3*0­+0*-3+0*0­+0*1
expected[2 * 4 + 3] = 0 // 0*0­+0*-3­+2*0­+0*1
expected[3 * 4 + 0] = 0 // 0*0­+0*0­+0*0­+0*0
expected[3 * 4 + 1] = 0 // 0*0­+6*0­+1*0­+0*0
expected[3 * 4 + 2] = 0 // 3*0­+0*0­+0*0­+0*0
expected[3 * 4 + 3] = 0 // 0*0­+0*0­+2*0­+0*0
}
mut a := glm.Mat4{adata}
b := glm.Mat4{bdata}
a = glm.mult(a, b)
for i in 0 .. 15 {
assert unsafe { a.data[i] } == unsafe { expected[i] }
}
}