math.fractions: add approximation.v and tests

pull/4929/head
Hungry Blue Dev 2020-05-17 14:30:29 +05:30 committed by GitHub
parent 02fb393747
commit b138cadbcb
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 302 additions and 0 deletions

View File

@ -0,0 +1,119 @@
// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module fractions
import math
const (
default_eps = 1.0e-4
max_iterations = 50
zero = fraction(0, 1)
)
// ------------------------------------------------------------------------
// Unwrapped evaluation methods for fast evaluation of continued fractions.
// ------------------------------------------------------------------------
// We need these functions because the evaluation of continued fractions
// always has to be done from the end. Also, the numerator-denominator pairs
// are generated from front to end. This means building a result from a
// previous one isn't possible. So we need unrolled versions to ensure that
// we don't take too much of a performance penalty by calling eval_cf
// several times.
// ------------------------------------------------------------------------
// eval_1 returns the result of evaluating a continued fraction series of length 1
fn eval_1(whole i64, d []i64) Fraction {
return fraction(whole * d[0] + 1, d[0])
}
// eval_2 returns the result of evaluating a continued fraction series of length 2
fn eval_2(whole i64, d []i64) Fraction {
den := d[0] * d[1] + 1
return fraction(whole * den + d[1], den)
}
// eval_3 returns the result of evaluating a continued fraction series of length 3
fn eval_3(whole i64, d []i64) Fraction {
d1d2_plus_n2 := d[1] * d[2] + 1
den := d[0] * d1d2_plus_n2 + d[2]
return fraction(whole * den + d1d2_plus_n2, den)
}
// eval_cf evaluates a continued fraction series and returns a Fraction.
fn eval_cf(whole i64, den []i64) Fraction {
count := den.len
// Offload some small-scale calculations
// to dedicated functions
match count {
1 {
return eval_1(whole, den)
}
2 {
return eval_2(whole, den)
}
3 {
return eval_3(whole, den)
}
else {
last := count - 1
mut n := 1
mut d := den[last]
// The calculations are done from back to front
for index := count - 2; index >= 0; index-- {
t := d
d = den[index] * d + n
n = t
}
return fraction(d * whole + n, d)
}
}
}
// approximate returns a Fraction that approcimates the given value to
// within the default epsilon value (1.0e-4). This means the result will
// be accurate to 3 places after the decimal.
pub fn approximate(val f64) Fraction {
return approximate_with_eps(val, default_eps)
}
// approximate_with_eps returns a Fraction
pub fn approximate_with_eps(val, eps f64) Fraction {
if val == 0.0 {
return zero
}
if eps < 0.0 {
panic('Epsilon value cannot be negative.')
}
if math.fabs(val) > math.max_i64 {
panic('Value out of range.')
}
// The integer part is separated first. Then we process the fractional
// part to generate numerators and denominators in tandem.
whole := i64(val)
mut frac := val - whole
// Quick exit for integers
if frac == 0.0 {
return fraction(whole, 1)
}
mut d := []i64{}
mut partial := zero
// We must complete the approximation within the maximum number of
// itertations allowed. If we can't panic.
// Empirically tested: the hardest constant to approximate is the
// golden ratio (math.phi) and for f64s, it only needs 38 iterations.
for _ in 0 .. max_iterations {
// We calculate the reciprocal. That's why the numerator is
// always 1.
frac = 1.0 / frac
den := i64(frac)
d << den
// eval_cf is called often so it needs to be performant
partial = eval_cf(whole, d)
// Check if we're done
if math.fabs(val - partial.f64()) < eps {
return partial
}
frac -= den
}
panic("Couldn\'t converge. Please create an issue on https://github.com/vlang/v")
}

View File

@ -0,0 +1,180 @@
// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
import fractions
import math
fn test_half() {
float_val := 0.5
fract_val := fractions.approximate(float_val)
assert fract_val.equals(fractions.fraction(1, 2))
}
fn test_third() {
float_val := 1.0 / 3.0
fract_val := fractions.approximate(float_val)
assert fract_val.equals(fractions.fraction(1, 3))
}
fn test_minus_one_twelfth() {
float_val := -1.0 / 12.0
fract_val := fractions.approximate(float_val)
assert fract_val.equals(fractions.fraction(-1, 12))
}
fn test_zero() {
float_val := 0.0
println('Pre')
fract_val := fractions.approximate(float_val)
println('Post')
assert fract_val.equals(fractions.fraction(0, 1))
}
fn test_minus_one() {
float_val := -1.0
fract_val := fractions.approximate(float_val)
assert fract_val.equals(fractions.fraction(-1, 1))
}
fn test_thirty_three() {
float_val := 33.0
fract_val := fractions.approximate(float_val)
assert fract_val.equals(fractions.fraction(33, 1))
}
fn test_millionth() {
float_val := 1.0 / 1000000.0
fract_val := fractions.approximate(float_val)
assert fract_val.equals(fractions.fraction(1, 1000000))
}
fn test_minus_27_by_57() {
float_val := -27.0 / 57.0
fract_val := fractions.approximate(float_val)
assert fract_val.equals(fractions.fraction(-27, 57))
}
fn test_29_by_104() {
float_val := 29.0 / 104.0
fract_val := fractions.approximate(float_val)
assert fract_val.equals(fractions.fraction(29, 104))
}
fn test_140710_232() {
float_val := 140710.232
fract_val := fractions.approximate(float_val)
// Approximation will match perfectly for upto 3 places after the decimal
// The result will be within default_eps of original value
assert fract_val.f64() == float_val
}
fn test_pi_1_digit() {
assert fractions.approximate_with_eps(math.pi, 5.0e-2).equals(fractions.fraction(22, 7))
}
fn test_pi_2_digits() {
assert fractions.approximate_with_eps(math.pi, 5.0e-3).equals(fractions.fraction(22, 7))
}
fn test_pi_3_digits() {
assert fractions.approximate_with_eps(math.pi, 5.0e-4).equals(fractions.fraction(333, 106))
}
fn test_pi_4_digits() {
assert fractions.approximate_with_eps(math.pi, 5.0e-5).equals(fractions.fraction(355, 113))
}
fn test_pi_5_digits() {
assert fractions.approximate_with_eps(math.pi, 5.0e-6).equals(fractions.fraction(355, 113))
}
fn test_pi_6_digits() {
assert fractions.approximate_with_eps(math.pi, 5.0e-7).equals(fractions.fraction(355, 113))
}
fn test_pi_7_digits() {
assert fractions.approximate_with_eps(math.pi, 5.0e-8).equals(fractions.fraction(103993,
33102))
}
fn test_pi_8_digits() {
assert fractions.approximate_with_eps(math.pi, 5.0e-9).equals(fractions.fraction(103993,
33102))
}
fn test_pi_9_digits() {
assert fractions.approximate_with_eps(math.pi, 5.0e-10).equals(fractions.fraction(104348,
33215))
}
fn test_pi_10_digits() {
assert fractions.approximate_with_eps(math.pi, 5.0e-11).equals(fractions.fraction(312689,
99532))
}
fn test_pi_11_digits() {
assert fractions.approximate_with_eps(math.pi, 5.0e-12).equals(fractions.fraction(1146408,
364913))
}
fn test_pi_12_digits() {
assert fractions.approximate_with_eps(math.pi, 5.0e-13).equals(fractions.fraction(4272943,
1360120))
}
fn test_phi_1_digit() {
assert fractions.approximate_with_eps(math.phi, 5.0e-2).equals(fractions.fraction(5, 3))
}
fn test_phi_2_digits() {
assert fractions.approximate_with_eps(math.phi, 5.0e-3).equals(fractions.fraction(21, 13))
}
fn test_phi_3_digits() {
assert fractions.approximate_with_eps(math.phi, 5.0e-4).equals(fractions.fraction(55, 34))
}
fn test_phi_4_digits() {
assert fractions.approximate_with_eps(math.phi, 5.0e-5).equals(fractions.fraction(233,
144))
}
fn test_phi_5_digits() {
assert fractions.approximate_with_eps(math.phi, 5.0e-6).equals(fractions.fraction(610,
377))
}
fn test_phi_6_digits() {
assert fractions.approximate_with_eps(math.phi, 5.0e-7).equals(fractions.fraction(1597,
987))
}
fn test_phi_7_digits() {
assert fractions.approximate_with_eps(math.phi, 5.0e-8).equals(fractions.fraction(6765,
4181))
}
fn test_phi_8_digits() {
assert fractions.approximate_with_eps(math.phi, 5.0e-9).equals(fractions.fraction(17711,
10946))
}
fn test_phi_9_digits() {
assert fractions.approximate_with_eps(math.phi, 5.0e-10).equals(fractions.fraction(75025,
46368))
}
fn test_phi_10_digits() {
assert fractions.approximate_with_eps(math.phi, 5.0e-11).equals(fractions.fraction(196418,
121393))
}
fn test_phi_11_digits() {
assert fractions.approximate_with_eps(math.phi, 5.0e-12).equals(fractions.fraction(514229,
317811))
}
fn test_phi_12_digits() {
assert fractions.approximate_with_eps(math.phi, 5.0e-13).equals(fractions.fraction(2178309,
1346269))
}

View File

@ -1,3 +1,6 @@
// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
import math.fractions import math.fractions
// (Old) results are verified using https://www.calculatorsoup.com/calculators/math/fractions.php // (Old) results are verified using https://www.calculatorsoup.com/calculators/math/fractions.php