math.fractions: add approximation.v and tests
parent
02fb393747
commit
b138cadbcb
|
@ -0,0 +1,119 @@
|
|||
// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
|
||||
// Use of this source code is governed by an MIT license
|
||||
// that can be found in the LICENSE file.
|
||||
module fractions
|
||||
|
||||
import math
|
||||
|
||||
const (
|
||||
default_eps = 1.0e-4
|
||||
max_iterations = 50
|
||||
zero = fraction(0, 1)
|
||||
)
|
||||
|
||||
// ------------------------------------------------------------------------
|
||||
// Unwrapped evaluation methods for fast evaluation of continued fractions.
|
||||
// ------------------------------------------------------------------------
|
||||
// We need these functions because the evaluation of continued fractions
|
||||
// always has to be done from the end. Also, the numerator-denominator pairs
|
||||
// are generated from front to end. This means building a result from a
|
||||
// previous one isn't possible. So we need unrolled versions to ensure that
|
||||
// we don't take too much of a performance penalty by calling eval_cf
|
||||
// several times.
|
||||
// ------------------------------------------------------------------------
|
||||
// eval_1 returns the result of evaluating a continued fraction series of length 1
|
||||
fn eval_1(whole i64, d []i64) Fraction {
|
||||
return fraction(whole * d[0] + 1, d[0])
|
||||
}
|
||||
|
||||
// eval_2 returns the result of evaluating a continued fraction series of length 2
|
||||
fn eval_2(whole i64, d []i64) Fraction {
|
||||
den := d[0] * d[1] + 1
|
||||
return fraction(whole * den + d[1], den)
|
||||
}
|
||||
|
||||
// eval_3 returns the result of evaluating a continued fraction series of length 3
|
||||
fn eval_3(whole i64, d []i64) Fraction {
|
||||
d1d2_plus_n2 := d[1] * d[2] + 1
|
||||
den := d[0] * d1d2_plus_n2 + d[2]
|
||||
return fraction(whole * den + d1d2_plus_n2, den)
|
||||
}
|
||||
|
||||
// eval_cf evaluates a continued fraction series and returns a Fraction.
|
||||
fn eval_cf(whole i64, den []i64) Fraction {
|
||||
count := den.len
|
||||
// Offload some small-scale calculations
|
||||
// to dedicated functions
|
||||
match count {
|
||||
1 {
|
||||
return eval_1(whole, den)
|
||||
}
|
||||
2 {
|
||||
return eval_2(whole, den)
|
||||
}
|
||||
3 {
|
||||
return eval_3(whole, den)
|
||||
}
|
||||
else {
|
||||
last := count - 1
|
||||
mut n := 1
|
||||
mut d := den[last]
|
||||
// The calculations are done from back to front
|
||||
for index := count - 2; index >= 0; index-- {
|
||||
t := d
|
||||
d = den[index] * d + n
|
||||
n = t
|
||||
}
|
||||
return fraction(d * whole + n, d)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// approximate returns a Fraction that approcimates the given value to
|
||||
// within the default epsilon value (1.0e-4). This means the result will
|
||||
// be accurate to 3 places after the decimal.
|
||||
pub fn approximate(val f64) Fraction {
|
||||
return approximate_with_eps(val, default_eps)
|
||||
}
|
||||
|
||||
// approximate_with_eps returns a Fraction
|
||||
pub fn approximate_with_eps(val, eps f64) Fraction {
|
||||
if val == 0.0 {
|
||||
return zero
|
||||
}
|
||||
if eps < 0.0 {
|
||||
panic('Epsilon value cannot be negative.')
|
||||
}
|
||||
if math.fabs(val) > math.max_i64 {
|
||||
panic('Value out of range.')
|
||||
}
|
||||
// The integer part is separated first. Then we process the fractional
|
||||
// part to generate numerators and denominators in tandem.
|
||||
whole := i64(val)
|
||||
mut frac := val - whole
|
||||
// Quick exit for integers
|
||||
if frac == 0.0 {
|
||||
return fraction(whole, 1)
|
||||
}
|
||||
mut d := []i64{}
|
||||
mut partial := zero
|
||||
// We must complete the approximation within the maximum number of
|
||||
// itertations allowed. If we can't panic.
|
||||
// Empirically tested: the hardest constant to approximate is the
|
||||
// golden ratio (math.phi) and for f64s, it only needs 38 iterations.
|
||||
for _ in 0 .. max_iterations {
|
||||
// We calculate the reciprocal. That's why the numerator is
|
||||
// always 1.
|
||||
frac = 1.0 / frac
|
||||
den := i64(frac)
|
||||
d << den
|
||||
// eval_cf is called often so it needs to be performant
|
||||
partial = eval_cf(whole, d)
|
||||
// Check if we're done
|
||||
if math.fabs(val - partial.f64()) < eps {
|
||||
return partial
|
||||
}
|
||||
frac -= den
|
||||
}
|
||||
panic("Couldn\'t converge. Please create an issue on https://github.com/vlang/v")
|
||||
}
|
|
@ -0,0 +1,180 @@
|
|||
// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
|
||||
// Use of this source code is governed by an MIT license
|
||||
// that can be found in the LICENSE file.
|
||||
import fractions
|
||||
import math
|
||||
|
||||
fn test_half() {
|
||||
float_val := 0.5
|
||||
fract_val := fractions.approximate(float_val)
|
||||
assert fract_val.equals(fractions.fraction(1, 2))
|
||||
}
|
||||
|
||||
fn test_third() {
|
||||
float_val := 1.0 / 3.0
|
||||
fract_val := fractions.approximate(float_val)
|
||||
assert fract_val.equals(fractions.fraction(1, 3))
|
||||
}
|
||||
|
||||
fn test_minus_one_twelfth() {
|
||||
float_val := -1.0 / 12.0
|
||||
fract_val := fractions.approximate(float_val)
|
||||
assert fract_val.equals(fractions.fraction(-1, 12))
|
||||
}
|
||||
|
||||
fn test_zero() {
|
||||
float_val := 0.0
|
||||
println('Pre')
|
||||
fract_val := fractions.approximate(float_val)
|
||||
println('Post')
|
||||
assert fract_val.equals(fractions.fraction(0, 1))
|
||||
}
|
||||
|
||||
fn test_minus_one() {
|
||||
float_val := -1.0
|
||||
fract_val := fractions.approximate(float_val)
|
||||
assert fract_val.equals(fractions.fraction(-1, 1))
|
||||
}
|
||||
|
||||
fn test_thirty_three() {
|
||||
float_val := 33.0
|
||||
fract_val := fractions.approximate(float_val)
|
||||
assert fract_val.equals(fractions.fraction(33, 1))
|
||||
}
|
||||
|
||||
fn test_millionth() {
|
||||
float_val := 1.0 / 1000000.0
|
||||
fract_val := fractions.approximate(float_val)
|
||||
assert fract_val.equals(fractions.fraction(1, 1000000))
|
||||
}
|
||||
|
||||
fn test_minus_27_by_57() {
|
||||
float_val := -27.0 / 57.0
|
||||
fract_val := fractions.approximate(float_val)
|
||||
assert fract_val.equals(fractions.fraction(-27, 57))
|
||||
}
|
||||
|
||||
fn test_29_by_104() {
|
||||
float_val := 29.0 / 104.0
|
||||
fract_val := fractions.approximate(float_val)
|
||||
assert fract_val.equals(fractions.fraction(29, 104))
|
||||
}
|
||||
|
||||
fn test_140710_232() {
|
||||
float_val := 140710.232
|
||||
fract_val := fractions.approximate(float_val)
|
||||
// Approximation will match perfectly for upto 3 places after the decimal
|
||||
// The result will be within default_eps of original value
|
||||
assert fract_val.f64() == float_val
|
||||
}
|
||||
|
||||
fn test_pi_1_digit() {
|
||||
assert fractions.approximate_with_eps(math.pi, 5.0e-2).equals(fractions.fraction(22, 7))
|
||||
}
|
||||
|
||||
fn test_pi_2_digits() {
|
||||
assert fractions.approximate_with_eps(math.pi, 5.0e-3).equals(fractions.fraction(22, 7))
|
||||
}
|
||||
|
||||
fn test_pi_3_digits() {
|
||||
assert fractions.approximate_with_eps(math.pi, 5.0e-4).equals(fractions.fraction(333, 106))
|
||||
}
|
||||
|
||||
fn test_pi_4_digits() {
|
||||
assert fractions.approximate_with_eps(math.pi, 5.0e-5).equals(fractions.fraction(355, 113))
|
||||
}
|
||||
|
||||
fn test_pi_5_digits() {
|
||||
assert fractions.approximate_with_eps(math.pi, 5.0e-6).equals(fractions.fraction(355, 113))
|
||||
}
|
||||
|
||||
fn test_pi_6_digits() {
|
||||
assert fractions.approximate_with_eps(math.pi, 5.0e-7).equals(fractions.fraction(355, 113))
|
||||
}
|
||||
|
||||
fn test_pi_7_digits() {
|
||||
assert fractions.approximate_with_eps(math.pi, 5.0e-8).equals(fractions.fraction(103993,
|
||||
33102))
|
||||
}
|
||||
|
||||
fn test_pi_8_digits() {
|
||||
assert fractions.approximate_with_eps(math.pi, 5.0e-9).equals(fractions.fraction(103993,
|
||||
33102))
|
||||
}
|
||||
|
||||
fn test_pi_9_digits() {
|
||||
assert fractions.approximate_with_eps(math.pi, 5.0e-10).equals(fractions.fraction(104348,
|
||||
33215))
|
||||
}
|
||||
|
||||
fn test_pi_10_digits() {
|
||||
assert fractions.approximate_with_eps(math.pi, 5.0e-11).equals(fractions.fraction(312689,
|
||||
99532))
|
||||
}
|
||||
|
||||
fn test_pi_11_digits() {
|
||||
assert fractions.approximate_with_eps(math.pi, 5.0e-12).equals(fractions.fraction(1146408,
|
||||
364913))
|
||||
}
|
||||
|
||||
fn test_pi_12_digits() {
|
||||
assert fractions.approximate_with_eps(math.pi, 5.0e-13).equals(fractions.fraction(4272943,
|
||||
1360120))
|
||||
}
|
||||
|
||||
fn test_phi_1_digit() {
|
||||
assert fractions.approximate_with_eps(math.phi, 5.0e-2).equals(fractions.fraction(5, 3))
|
||||
}
|
||||
|
||||
fn test_phi_2_digits() {
|
||||
assert fractions.approximate_with_eps(math.phi, 5.0e-3).equals(fractions.fraction(21, 13))
|
||||
}
|
||||
|
||||
fn test_phi_3_digits() {
|
||||
assert fractions.approximate_with_eps(math.phi, 5.0e-4).equals(fractions.fraction(55, 34))
|
||||
}
|
||||
|
||||
fn test_phi_4_digits() {
|
||||
assert fractions.approximate_with_eps(math.phi, 5.0e-5).equals(fractions.fraction(233,
|
||||
144))
|
||||
}
|
||||
|
||||
fn test_phi_5_digits() {
|
||||
assert fractions.approximate_with_eps(math.phi, 5.0e-6).equals(fractions.fraction(610,
|
||||
377))
|
||||
}
|
||||
|
||||
fn test_phi_6_digits() {
|
||||
assert fractions.approximate_with_eps(math.phi, 5.0e-7).equals(fractions.fraction(1597,
|
||||
987))
|
||||
}
|
||||
|
||||
fn test_phi_7_digits() {
|
||||
assert fractions.approximate_with_eps(math.phi, 5.0e-8).equals(fractions.fraction(6765,
|
||||
4181))
|
||||
}
|
||||
|
||||
fn test_phi_8_digits() {
|
||||
assert fractions.approximate_with_eps(math.phi, 5.0e-9).equals(fractions.fraction(17711,
|
||||
10946))
|
||||
}
|
||||
|
||||
fn test_phi_9_digits() {
|
||||
assert fractions.approximate_with_eps(math.phi, 5.0e-10).equals(fractions.fraction(75025,
|
||||
46368))
|
||||
}
|
||||
|
||||
fn test_phi_10_digits() {
|
||||
assert fractions.approximate_with_eps(math.phi, 5.0e-11).equals(fractions.fraction(196418,
|
||||
121393))
|
||||
}
|
||||
|
||||
fn test_phi_11_digits() {
|
||||
assert fractions.approximate_with_eps(math.phi, 5.0e-12).equals(fractions.fraction(514229,
|
||||
317811))
|
||||
}
|
||||
|
||||
fn test_phi_12_digits() {
|
||||
assert fractions.approximate_with_eps(math.phi, 5.0e-13).equals(fractions.fraction(2178309,
|
||||
1346269))
|
||||
}
|
|
@ -1,3 +1,6 @@
|
|||
// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
|
||||
// Use of this source code is governed by an MIT license
|
||||
// that can be found in the LICENSE file.
|
||||
import math.fractions
|
||||
|
||||
// (Old) results are verified using https://www.calculatorsoup.com/calculators/math/fractions.php
|
||||
|
|
Loading…
Reference in New Issue