math: sign function (#10014)
parent
68c8709343
commit
b5afa049e9
|
@ -37,7 +37,7 @@ pub const (
|
|||
min_i16 = -32768
|
||||
max_i32 = 2147483647
|
||||
min_i32 = -2147483648
|
||||
// -9223372036854775808 is wrong because C compilers parse litteral values
|
||||
// -9223372036854775808 is wrong because C compilers parse literal values
|
||||
// without sign first, and 9223372036854775808 overflows i64, hence the
|
||||
// consecutive subtraction by 1
|
||||
min_i64 = i64(-9223372036854775807 - 1)
|
||||
|
|
|
@ -31,11 +31,13 @@ pub fn aprox_cos(a f64) f64 {
|
|||
}
|
||||
|
||||
// copysign returns a value with the magnitude of x and the sign of y
|
||||
[inline]
|
||||
pub fn copysign(x f64, y f64) f64 {
|
||||
return f64_from_bits((f64_bits(x) & ~sign_mask) | (f64_bits(y) & sign_mask))
|
||||
}
|
||||
|
||||
// degrees convert from degrees to radians.
|
||||
[inline]
|
||||
pub fn degrees(radians f64) f64 {
|
||||
return radians * (180.0 / pi)
|
||||
}
|
||||
|
@ -59,6 +61,7 @@ pub fn digits(_n int, base int) []int {
|
|||
return res
|
||||
}
|
||||
|
||||
[inline]
|
||||
pub fn fabs(x f64) f64 {
|
||||
if x < 0.0 {
|
||||
return -x
|
||||
|
@ -99,6 +102,7 @@ pub fn lcm(a i64, b i64) i64 {
|
|||
}
|
||||
|
||||
// max returns the maximum value of the two provided.
|
||||
[inline]
|
||||
pub fn max(a f64, b f64) f64 {
|
||||
if a > b {
|
||||
return a
|
||||
|
@ -107,6 +111,7 @@ pub fn max(a f64, b f64) f64 {
|
|||
}
|
||||
|
||||
// min returns the minimum value of the two provided.
|
||||
[inline]
|
||||
pub fn min(a f64, b f64) f64 {
|
||||
if a < b {
|
||||
return a
|
||||
|
@ -114,12 +119,30 @@ pub fn min(a f64, b f64) f64 {
|
|||
return b
|
||||
}
|
||||
|
||||
// sign returns the corresponding sign -1.0, 1.0 of the provided number.
|
||||
// if n is not a number, its sign is nan too.
|
||||
[inline]
|
||||
pub fn sign(n f64) f64 {
|
||||
if is_nan(n) {
|
||||
return nan()
|
||||
}
|
||||
return copysign(1.0, n)
|
||||
}
|
||||
|
||||
// signi returns the corresponding sign -1.0, 1.0 of the provided number.
|
||||
[inline]
|
||||
pub fn signi(n f64) int {
|
||||
return int(copysign(1.0, n))
|
||||
}
|
||||
|
||||
// radians convert from radians to degrees.
|
||||
[inline]
|
||||
pub fn radians(degrees f64) f64 {
|
||||
return degrees * (pi / 180.0)
|
||||
}
|
||||
|
||||
// signbit returns a value with the boolean representation of the sign for x
|
||||
[inline]
|
||||
pub fn signbit(x f64) bool {
|
||||
return f64_bits(x) & sign_mask != 0
|
||||
}
|
||||
|
|
|
@ -368,6 +368,49 @@ fn test_min() {
|
|||
}
|
||||
}
|
||||
|
||||
fn test_signi() {
|
||||
assert signi(inf(-1)) == -1
|
||||
assert signi(-72234878292.4586129) == -1
|
||||
assert signi(-10) == -1
|
||||
assert signi(-pi) == -1
|
||||
assert signi(-1) == -1
|
||||
assert signi(-0.000000000001) == -1
|
||||
assert signi(-0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001) == -1
|
||||
assert signi(-0.0) == -1
|
||||
//
|
||||
assert signi(inf(1)) == 1
|
||||
assert signi(72234878292.4586129) == 1
|
||||
assert signi(10) == 1
|
||||
assert signi(pi) == 1
|
||||
assert signi(1) == 1
|
||||
assert signi(0.000000000001) == 1
|
||||
assert signi(0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001) == 1
|
||||
assert signi(0.0) == 1
|
||||
assert signi(nan()) == 1
|
||||
}
|
||||
|
||||
fn test_sign() {
|
||||
assert sign(inf(-1)) == -1.0
|
||||
assert sign(-72234878292.4586129) == -1.0
|
||||
assert sign(-10) == -1.0
|
||||
assert sign(-pi) == -1.0
|
||||
assert sign(-1) == -1.0
|
||||
assert sign(-0.000000000001) == -1.0
|
||||
assert sign(-0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001) == -1.0
|
||||
assert sign(-0.0) == -1.0
|
||||
//
|
||||
assert sign(inf(1)) == 1.0
|
||||
assert sign(72234878292.4586129) == 1
|
||||
assert sign(10) == 1.0
|
||||
assert sign(pi) == 1.0
|
||||
assert sign(1) == 1.0
|
||||
assert sign(0.000000000001) == 1.0
|
||||
assert sign(0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001) == 1.0
|
||||
assert sign(0.0) == 1.0
|
||||
assert is_nan(sign(nan()))
|
||||
assert is_nan(sign(-nan()))
|
||||
}
|
||||
|
||||
fn test_exp() {
|
||||
for i := 0; i < math.vf_.len; i++ {
|
||||
f := exp(math.vf_[i])
|
||||
|
@ -576,7 +619,7 @@ fn test_round() {
|
|||
[f64(4503599627370495.5), 4503599627370496], /* 1 bit fraction, rounding to 0 bit fractian */
|
||||
[f64(4503599627370497), 4503599627370497], /* large integer */
|
||||
]
|
||||
_ := vfround_even_sc_[0][0]
|
||||
_ := vfround_even_sc_[0][0]
|
||||
for i := 0; i < vfround_sc_.len; i++ {
|
||||
f := round(vfround_sc_[i][0])
|
||||
assert alike(vfround_sc_[i][1], f)
|
||||
|
|
Loading…
Reference in New Issue