From bd95f5bf8f6e10aca2ec5b67257c08b341b2dc17 Mon Sep 17 00:00:00 2001 From: Vitalie Ciubotaru Date: Wed, 24 Jul 2019 01:29:04 +0900 Subject: [PATCH] bf: add basic documentation --- vlib/bf/bf.v | 80 ++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 80 insertions(+) diff --git a/vlib/bf/bf.v b/vlib/bf/bf.v index be4783c423..4d8cc8ae3c 100644 --- a/vlib/bf/bf.v +++ b/vlib/bf/bf.v @@ -1,5 +1,18 @@ module bf +/* +bf (BitField) is a module (shared library for V programming language) for +manipulating arrays of bits, i.e. series of zeroes and ones spread across an +array of storage units (unsigned 32-bit integers). + +BitField structure +------------------ + +Bit arrays are stored in data structures called 'BitField'. The structure is +'opaque', i.e. its internals are not available to the end user. This module +provides API (functions and methods) for accessing and modifying bit arrays. +*/ + struct BitField { mut: size int @@ -64,6 +77,9 @@ fn cleartail(instance BitField) { // public functions +// str2bf() converts a string of characters ('0' and '1') to a bit +// array. Any character different from '0' is treated as '1'. + pub fn str2bf(input string) BitField { mut output := new(input.len) for i := 0; i < input.len; i++ { @@ -74,6 +90,9 @@ pub fn str2bf(input string) BitField { return output } +// string() converts the bit array to a string of characters ('0' and '1') and +// return the string + pub fn (input BitField) string() string { mut output := '' for i := 0; i < input.size; i++ { @@ -87,6 +106,8 @@ pub fn (input BitField) string() string { return output } +//new() creates an empty bit array of capable of storing 'size' bits. + pub fn new(size int) BitField { output := BitField{ size: size @@ -101,21 +122,31 @@ pub fn del(instance *BitField) { free(instance) } */ + +// getbit() returns the value (0 or 1) of bit number 'bit_nr' (count from +// 0) + pub fn (instance BitField) getbit(bitnr int) int { if bitnr >= instance.size {return 0} return bitget(instance, bitnr) } +// setbit() set bit number 'bit_nr' to 1 (count from 0) + pub fn (instance mut BitField) setbit(bitnr int) { if bitnr >= instance.size {return} bitset(instance, bitnr) } +// clearbit() clears (sets to zero) bit number 'bit_nr' (count from 0) + pub fn (instance mut BitField) clearbit(bitnr int) { if bitnr >= instance.size {return} bitclear(instance, bitnr) } +// setall() sets all bits in the array to 1 + pub fn (instance mut BitField) setall() { for i := 0; i < bitnslots(instance.size); i++ { instance.field[i] = u32(-1) @@ -123,17 +154,26 @@ pub fn (instance mut BitField) setall() { cleartail(instance) } +// clearall() clears (sets to zero) all bits in the array + pub fn (instance mut BitField) clearall() { for i := 0; i < bitnslots(instance.size); i++ { instance.field[i] = u32(0) } } +// togglebit() change the value (from 0 to 1 or from 1 to 0) of bit +// number 'bit_nr' + pub fn (instance mut BitField) togglebit(bitnr int) { if bitnr >= instance.size {return} bittoggle(instance, bitnr) } +// bfand() perform logical AND operation on every pair of bits from 'input1' +// and 'input2' and return the result as a new array. If inputs differ in size, +// the tail of the longer one is ignored. + pub fn bfand(input1 BitField, input2 BitField) BitField { size := min(input1.size, input2.size) bitnslots := bitnslots(size) @@ -147,6 +187,8 @@ pub fn bfand(input1 BitField, input2 BitField) BitField { return output } +// bfnot() toggle all bits in a bit array and return the result as a new array + pub fn bfnot(input BitField) BitField { size := input.size bitnslots := bitnslots(size) @@ -160,6 +202,10 @@ pub fn bfnot(input BitField) BitField { return output } +// bfor() perform logical OR operation on every pair of bits from 'input1' and +// 'input2' and return the result as a new array. If inputs differ in size, the +// tail of the longer one is ignored. + pub fn bfor(input1 BitField, input2 BitField) BitField { size := min(input1.size, input2.size) bitnslots := bitnslots(size) @@ -173,6 +219,10 @@ pub fn bfor(input1 BitField, input2 BitField) BitField { return output } +// bfxor(input1 BitField, input2 BitField) perform logical XOR operation on +// every pair of bits from 'input1' and 'input2' and return the result as a new +// array. If inputs differ in size, the tail of the longer one is ignored. + pub fn bfxor(input1 BitField, input2 BitField) BitField { size := min(input1.size, input2.size) bitnslots := bitnslots(size) @@ -186,6 +236,8 @@ pub fn bfxor(input1 BitField, input2 BitField) BitField { return output } +// join() concatenates two bit arrays and return the result as a new array. + pub fn join(input1 BitField, input2 BitField) BitField { output_size := input1.size + input2.size mut output := new(output_size) @@ -233,6 +285,9 @@ pub fn join(input1 BitField, input2 BitField) BitField { return output } +// print(instance BitField) send the content of a bit array to stdout as a +// string of characters ('0' and '1'). + pub fn print(instance BitField) { mut i := 0 for i < instance.size { @@ -246,10 +301,14 @@ pub fn print(instance BitField) { } } +// getsize() returns the number of bits the array can hold + pub fn (instance BitField) getsize() int { return instance.size } +// clone() create a copy of a bit array + pub fn clone(input BitField) BitField { bitnslots := bitnslots(input.size) mut output := new(input.size) @@ -261,6 +320,9 @@ pub fn clone(input BitField) BitField { return output } +// cmp() compare two bit arrays bit by bit and return 'true' if they are +// identical by length and contents and 'false' otherwise. + pub fn cmp(input1 BitField, input2 BitField) bool { if input1.size != input2.size {return false} for i := 0; i < bitnslots(input1.size); i++ { @@ -269,6 +331,8 @@ pub fn cmp(input1 BitField, input2 BitField) bool { return true } +// popcount() returns the number of set bits (ones) in the array + pub fn (instance BitField) popcount() int { size := instance.size bitnslots := bitnslots(size) @@ -289,11 +353,16 @@ pub fn (instance BitField) popcount() int { return count } +// hamming () compute the Hamming distance between two bit arrays. + pub fn hamming (input1 BitField, input2 BitField) int { input_xored := bfxor(input1, input2) return input_xored.popcount() } +// pos() checks if the array contains a sub-array 'needle' and returns its +// position if it does, -1 if it does not, and -2 on error. + pub fn (haystack BitField) pos(needle BitField) int { heystack_size := haystack.size needle_size := needle.size @@ -314,6 +383,9 @@ pub fn (haystack BitField) pos(needle BitField) int { return -1 } +// slice() return a sub-array of bits between 'start_bit_nr' (included) and +// 'end_bit_nr' (excluded) + pub fn (input BitField) slice(_start int, _end int) BitField { // boundary checks mut start := _start @@ -381,6 +453,9 @@ pub fn (input BitField) slice(_start int, _end int) BitField { return output } +// reverse() reverses the order of bits in the array (swap the first with the +// last, the second with the last but one and so on) + pub fn (instance mut BitField) reverse() BitField { size := instance.size bitnslots := bitnslots(size) @@ -401,6 +476,8 @@ pub fn (instance mut BitField) reverse() BitField { return output } +// resize() changes the size of the bit array to 'new_size' + pub fn (instance mut BitField) resize(size int) { bitnslots := bitnslots(size) old_size := instance.size @@ -416,6 +493,9 @@ pub fn (instance mut BitField) resize(size int) { } } +// rotate(offset int) circular-shift the bits by 'offset' positions (move +// 'offset' bit to 0, 'offset+1' bit to 1, and so on) + pub fn (instance BitField) rotate(offset int) BitField { /** * This function "cuts" the bitfield into two and swaps them.