bitfield: fix bf.from_bytes/1 ( now, bf.from_bytes(b) == bf.from_str(bf.from_bytes(b).str()) )
parent
05f6e8b5aa
commit
c5c310280f
|
@ -12,7 +12,6 @@ Bit arrays are stored in data structures called 'BitField'. The structure is
|
|||
'opaque', i.e. its internals are not available to the end user. This module
|
||||
provides API (functions and methods) for accessing and modifying bit arrays.
|
||||
*/
|
||||
|
||||
pub struct BitField {
|
||||
mut:
|
||||
size int
|
||||
|
@ -26,12 +25,36 @@ const (
|
|||
)
|
||||
|
||||
// public functions
|
||||
|
||||
// from_bytes() converts a byte array into a bitfield.
|
||||
pub fn from_bytes(input []byte) BitField {
|
||||
mut output := new(input.len * 8)
|
||||
for i, b in input {
|
||||
output.field[i / 4] |= u32(b) << ((i % 4) * 8)
|
||||
mut ob := byte(0)
|
||||
if b & 0b10000000 > 0 {
|
||||
ob |= 0b00000001
|
||||
}
|
||||
if b & 0b01000000 > 0 {
|
||||
ob |= 0b00000010
|
||||
}
|
||||
if b & 0b00100000 > 0 {
|
||||
ob |= 0b00000100
|
||||
}
|
||||
if b & 0b00010000 > 0 {
|
||||
ob |= 0b00001000
|
||||
}
|
||||
if b & 0b00001000 > 0 {
|
||||
ob |= 0b00010000
|
||||
}
|
||||
if b & 0b00000100 > 0 {
|
||||
ob |= 0b00100000
|
||||
}
|
||||
if b & 0b00000010 > 0 {
|
||||
ob |= 0b01000000
|
||||
}
|
||||
if b & 0b00000001 > 0 {
|
||||
ob |= 0b10000000
|
||||
}
|
||||
output.field[i / 4] |= u32(ob) << ((i % 4) * 8)
|
||||
}
|
||||
return output
|
||||
}
|
||||
|
@ -55,8 +78,7 @@ pub fn (input BitField) str() string {
|
|||
for i in 0 .. input.size {
|
||||
if input.get_bit(i) == 1 {
|
||||
output = output + '1'
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
output = output + '0'
|
||||
}
|
||||
}
|
||||
|
@ -72,13 +94,13 @@ pub fn new(size int) BitField {
|
|||
}
|
||||
return output
|
||||
}
|
||||
|
||||
/*
|
||||
pub fn del(instance *BitField) {
|
||||
free(instance.field)
|
||||
free(instance)
|
||||
}
|
||||
*/
|
||||
|
||||
// get_bit returns the value (0 or 1) of bit number 'bit_nr' (count from 0).
|
||||
pub fn (instance BitField) get_bit(bitnr int) int {
|
||||
if bitnr >= instance.size {
|
||||
|
@ -189,16 +211,12 @@ pub fn join(input1 BitField, input2 BitField) BitField {
|
|||
for i in 0 .. zbitnslots(input1.size) {
|
||||
output.field[i] = input1.field[i]
|
||||
}
|
||||
|
||||
// find offset bit and offset slot
|
||||
offset_bit := input1.size % slot_size
|
||||
offset_slot := input1.size / slot_size
|
||||
|
||||
for i in 0 .. zbitnslots(input2.size) {
|
||||
output.field[i + offset_slot] |=
|
||||
u32(input2.field[i] << u32(offset_bit))
|
||||
output.field[i + offset_slot] |= u32(input2.field[i] << u32(offset_bit))
|
||||
}
|
||||
|
||||
/*
|
||||
* If offset_bit is not zero, additional operations are needed.
|
||||
* Number of iterations depends on the nr of slots in output. Two
|
||||
|
@ -214,13 +232,11 @@ pub fn join(input1 BitField, input2 BitField) BitField {
|
|||
*/
|
||||
if (output_size - 1) % slot_size < (input2.size - 1) % slot_size {
|
||||
for i in 0 .. zbitnslots(input2.size) {
|
||||
output.field[i + offset_slot + 1] |=
|
||||
u32(input2.field[i] >> u32(slot_size - offset_bit))
|
||||
output.field[i + offset_slot + 1] |= u32(input2.field[i] >> u32(slot_size - offset_bit))
|
||||
}
|
||||
} else if (output_size - 1) % slot_size > (input2.size - 1) % slot_size {
|
||||
for i in 0 .. zbitnslots(input2.size) - 1 {
|
||||
output.field[i + offset_slot + 1] |=
|
||||
u32(input2.field[i] >> u32(slot_size - offset_bit))
|
||||
output.field[i + offset_slot + 1] |= u32(input2.field[i] >> u32(slot_size - offset_bit))
|
||||
}
|
||||
}
|
||||
return output
|
||||
|
@ -244,9 +260,13 @@ pub fn (instance BitField) clone() BitField {
|
|||
// cmp compares two bit arrays bit by bit and returns 'true' if they are
|
||||
// identical by length and contents and 'false' otherwise.
|
||||
pub fn (instance BitField) cmp(input BitField) bool {
|
||||
if instance.size != input.size {return false}
|
||||
if instance.size != input.size {
|
||||
return false
|
||||
}
|
||||
for i in 0 .. zbitnslots(instance.size) {
|
||||
if instance.field[i] != input.field[i] {return false}
|
||||
if instance.field[i] != input.field[i] {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
@ -284,7 +304,6 @@ pub fn (haystack BitField) pos(needle BitField) int {
|
|||
heystack_size := haystack.size
|
||||
needle_size := needle.size
|
||||
diff := heystack_size - needle_size
|
||||
|
||||
// needle longer than haystack; return error code -2
|
||||
if diff < 0 {
|
||||
return -2
|
||||
|
@ -312,53 +331,41 @@ pub fn (input BitField) slice(_start int, _end int) BitField {
|
|||
if start > end {
|
||||
start = end // or panic?
|
||||
}
|
||||
|
||||
mut output := new(end - start)
|
||||
start_offset := start % slot_size
|
||||
end_offset := (end - 1) % slot_size
|
||||
start_slot := start / slot_size
|
||||
end_slot := (end - 1) / slot_size
|
||||
output_slots := zbitnslots(end - start)
|
||||
|
||||
if output_slots > 1 {
|
||||
if start_offset != 0 {
|
||||
for i in 0 .. output_slots - 1 {
|
||||
output.field[i] =
|
||||
u32(input.field[start_slot + i] >> u32(start_offset))
|
||||
output.field[i] = output.field[i] |
|
||||
u32(input.field[start_slot + i + 1] <<
|
||||
u32(slot_size - start_offset))
|
||||
output.field[i] = u32(input.field[start_slot + i] >> u32(start_offset))
|
||||
output.field[i] = output.field[i] | u32(input.field[start_slot + i + 1] << u32(slot_size -
|
||||
start_offset))
|
||||
}
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
for i in 0 .. output_slots - 1 {
|
||||
output.field[i] =
|
||||
u32(input.field[start_slot + i])
|
||||
output.field[i] = u32(input.field[start_slot + i])
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if start_offset > end_offset {
|
||||
output.field[(end - start - 1) / slot_size] =
|
||||
u32(input.field[end_slot - 1] >> u32(start_offset))
|
||||
output.field[(end - start - 1) / slot_size] = u32(input.field[end_slot - 1] >> u32(start_offset))
|
||||
mut mask := u32((1 << (end_offset + 1)) - 1)
|
||||
mask = input.field[end_slot] & mask
|
||||
mask = u32(mask << u32(slot_size - start_offset))
|
||||
output.field[(end - start - 1) / slot_size] |= mask
|
||||
}
|
||||
else if start_offset == 0 {
|
||||
} else if start_offset == 0 {
|
||||
mut mask := u32(0)
|
||||
if end_offset == slot_size - 1 {
|
||||
mask = u32(-1)
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
mask = u32(u32(1) << u32(end_offset + 1))
|
||||
mask = mask - u32(1)
|
||||
}
|
||||
output.field[(end - start - 1) / slot_size] =
|
||||
(input.field[end_slot] & mask)
|
||||
}
|
||||
else {
|
||||
output.field[(end - start - 1) / slot_size] = (input.field[end_slot] & mask)
|
||||
} else {
|
||||
mut mask := u32(((1 << (end_offset - start_offset + 1)) - 1) << start_offset)
|
||||
mask = input.field[end_slot] & mask
|
||||
mask = u32(mask >> u32(start_offset))
|
||||
|
@ -408,14 +415,15 @@ pub fn (mut instance BitField) resize(new_size int) {
|
|||
// rotate circular-shifts the bits by 'offset' positions (move
|
||||
// 'offset' bit to 0, 'offset+1' bit to 1, and so on).
|
||||
pub fn (instance BitField) rotate(offset int) BitField {
|
||||
/**
|
||||
/*
|
||||
*
|
||||
* This function "cuts" the bitfield into two and swaps them.
|
||||
* If the offset is positive, the cutting point is counted from the
|
||||
* beginning of the bit array, otherwise from the end.
|
||||
**/
|
||||
*
|
||||
*/
|
||||
size := instance.size
|
||||
// removing extra rotations
|
||||
|
||||
mut offset_internal := offset % size
|
||||
if offset_internal == 0 {
|
||||
// nothing to shift
|
||||
|
@ -424,7 +432,6 @@ pub fn (instance BitField) rotate(offset int) BitField {
|
|||
if offset_internal < 0 {
|
||||
offset_internal = offset_internal + size
|
||||
}
|
||||
|
||||
first_chunk := instance.slice(0, offset_internal)
|
||||
second_chunk := instance.slice(offset_internal, size)
|
||||
output := join(second_chunk, first_chunk)
|
||||
|
@ -432,14 +439,14 @@ pub fn (instance BitField) rotate(offset int) BitField {
|
|||
}
|
||||
|
||||
// Internal functions
|
||||
|
||||
fn (mut instance BitField) clear_tail() {
|
||||
tail := instance.size % slot_size
|
||||
if tail != 0 {
|
||||
// create a mask for the tail
|
||||
mask := u32((1 << tail) - 1)
|
||||
// clear the extra bits
|
||||
instance.field[zbitnslots(instance.size) - 1] = instance.field[zbitnslots(instance.size) - 1] & mask
|
||||
instance.field[zbitnslots(instance.size) - 1] = instance.field[zbitnslots(instance.size) -
|
||||
1] & mask
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -454,8 +461,7 @@ fn bitslot(size int) int {
|
|||
fn min(input1 int, input2 int) int {
|
||||
if input1 < input2 {
|
||||
return input1
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
return input2
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
import bitfield
|
||||
|
||||
import rand
|
||||
|
||||
fn test_bf_new_size() {
|
||||
|
@ -38,7 +37,9 @@ fn test_bf_and_not_or_xor() {
|
|||
output2 := bitfield.bf_and(bf_or, bf_not)
|
||||
mut result := 1
|
||||
for i < len {
|
||||
if output1.get_bit(i) != output2.get_bit(i) {result = 0}
|
||||
if output1.get_bit(i) != output2.get_bit(i) {
|
||||
result = 0
|
||||
}
|
||||
}
|
||||
assert result == 1
|
||||
}
|
||||
|
@ -111,24 +112,18 @@ fn test_hamming() {
|
|||
input1.set_bit(i)
|
||||
input2.set_bit(i)
|
||||
}
|
||||
else {
|
||||
|
||||
}
|
||||
else {}
|
||||
}
|
||||
}
|
||||
assert count == bitfield.hamming(input1, input2)
|
||||
}
|
||||
|
||||
fn test_bf_from_bytes() {
|
||||
input := [byte(0xF0), byte(0x0F), byte(0xF0), byte(0xFF)]
|
||||
output := bitfield.from_bytes(input)
|
||||
mut result := 1
|
||||
for i in 0..input.len * 8 {
|
||||
if (input[i / 8] >> (i % 8)) & 1 != output.get_bit(i) {
|
||||
result = 0
|
||||
}
|
||||
}
|
||||
assert result == 1
|
||||
input := [byte(0x01), 0xF0, 0x0F, 0xF0, 0xFF]
|
||||
output := bitfield.from_bytes(input).str()
|
||||
assert output == '00000001' + '11110000' + '00001111' + '11110000' + '11111111'
|
||||
newoutput := bitfield.from_str(output).str()
|
||||
assert newoutput == output
|
||||
}
|
||||
|
||||
fn test_bf_from_str() {
|
||||
|
@ -137,8 +132,7 @@ fn test_bf_from_str() {
|
|||
for _ in 0 .. len {
|
||||
if rand.intn(2) == 1 {
|
||||
input = input + '1'
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
input = input + '0'
|
||||
}
|
||||
}
|
||||
|
@ -164,8 +158,7 @@ fn test_bf_bf2str() {
|
|||
for i in 0 .. len {
|
||||
if input.get_bit(i) == 1 {
|
||||
check = check + '1'
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
check = check + '0'
|
||||
}
|
||||
}
|
||||
|
@ -240,48 +233,44 @@ fn test_bf_resize() {
|
|||
}
|
||||
|
||||
fn test_bf_pos() {
|
||||
/**
|
||||
/*
|
||||
*
|
||||
* set haystack size to 80
|
||||
* test different sizes of needle, from 1 to 80
|
||||
* test different positions of needle, from 0 to where it fits
|
||||
* all haystacks here contain exactly one instanse of needle,
|
||||
* so search should return non-negative-values
|
||||
**/
|
||||
*
|
||||
*/
|
||||
len := 80
|
||||
mut result := 1
|
||||
for i := 1; i < len; i++ { // needle size
|
||||
for j in 0 .. len - i { // needle position in the haystack
|
||||
// create the needle
|
||||
mut needle := bitfield.new(i)
|
||||
|
||||
// fill the needle with random values
|
||||
for k in 0 .. i {
|
||||
if rand.intn(2) == 1 {
|
||||
needle.set_bit(k)
|
||||
}
|
||||
}
|
||||
|
||||
// make sure the needle contains at least one set bit, selected randomly
|
||||
r := rand.intn(i)
|
||||
needle.set_bit(r)
|
||||
|
||||
// create the haystack, make sure it contains the needle
|
||||
mut haystack := needle.clone()
|
||||
|
||||
// if there is space between the start of the haystack and the sought needle, fill it with zeroes
|
||||
if j > 0 {
|
||||
start := bitfield.new(j)
|
||||
tmp := bitfield.join(start, haystack)
|
||||
haystack = tmp
|
||||
}
|
||||
|
||||
// if there is space between the sought needle and the end of haystack, fill it with zeroes
|
||||
if j + i < len {
|
||||
end := bitfield.new(len - j - i)
|
||||
tmp2 := bitfield.join(haystack, end)
|
||||
haystack = tmp2
|
||||
}
|
||||
|
||||
// now let's test
|
||||
// the result should be equal to j
|
||||
if haystack.pos(needle) != j {
|
||||
|
|
Loading…
Reference in New Issue